精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lg(x+
ax+1
-1)
,其中a是大于零的常数.
(1)求函数f(x)的定义域;
(2)当a∈(1,4)时,求函数f(x)的最小值;
(3)若?x∈[0,+∞)恒有f(x)>0,试确定实数a的取值范围.
分析:(1)、函数f(x)的定义域要求)x+
a
x+1
-1>0,
x2+a-1
x+1
>0
,解这个分式不等式时,因为含有参数a,所以要分类讨论.
(2)、令g(x)=x+
a
x+1
-1=x+1+
a
x+1
-2
,当a∈(1,4)时,由函数f(x)的定义域可知x+1>0,从而利用均值不等式求出函数f(x)的最小值.
(3)、由题设条件可知,x+
a
x+1
-1>1,
a
x+1
>2-x
,能推导出a>(2-x)(x+1)恒成立,从而推导出实数a的取值范围.
解答:解:(1)x+
a
x+1
-1>0,
x2+a-1
x+1
>0

因为a>0,故当a>1时,定义域为(-1,+∞);
当a=1时,定义域为(-1,0)∪(0,+∞);
当0<a<1时,定义域为(-1,-
1-a
)∪(
1-a
,+∞)

(2)令g(x)=x+
a
x+1
-1=x+1+
a
x+1
-2

当a∈(1,4)时,由(1)得x∈(-1,+∞),故x+1>0,
所以g(x)=x+
a
x+1
-1=x+1+
a
x+1
-2≥2
a
-2

当且仅当x+1=
a
x+1
x=
a
-1
时等号成立.
故f(x)的最小值为lg(2
a
-2)

(3)?x∈[0,+∞),恒有f(x)>0,
x+
a
x+1
-1>1,
a
x+1
>2-x
,又x∈[0,+∞),
则a>(2-x)(x+1),a>-x2+x+2恒成立,故a>2.
点评:本题是对数函数的综合题,难度较大,在解第(1)题时要注意对参数a进行妥类讨论,解第(2)题时要注意均值不等式的合理运用,解第(3)题时要进行合理转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案