精英家教网 > 高中数学 > 题目详情
设数列{an},{bn}满足,且bn=ln(1+an,n∈N*.
(1)证明:
(2)记{an2},{bn}的前n项和分别为An,Bn,证明:2Bn-An<8.
【答案】分析:(1)可先证明,由题意易知an>0(n∈N*),故bn>0(n∈N*),故只要证bn-an>0即可,
结合题目条件可利用构造函数证明.,也可构造函数证明.
(2)由条件可得,可求出an用错位相减法求出An,再结合(1)中的关系比较大小即可.
解答:解:(1)由知,an>0(n∈N*),故bn>0(n∈N*).,(2分)
设函数,则当x>0时,
∴f(x)在[0,+∞)上是增函数,
∴f(x)>f(0)=0,即bn-an>0,∴

设函数g(x)=ln(1+x)-x(x≥0),则当x>0时,
∴g(x)在[0,+∞)上是减函数,故g(x)<g(0)=0,
∴ln(1+an)-an<0
综上得:
(2)由得:
∴数列是以1为首项,以为公比的等比数列,

∵2bn-an2=2ln(1+an),由(1)的结论有ln(1+an)<an
∴2bn-an2<2an

令Sn=,则,相减得:
,(13分)

点评:本题考查函数单调性的应用:利用函数单调性证明数列不等式,构造函数需要较强的观察能力,难度较大,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的首项为1,前n项和是Sn,存在常数A,B使an+Sn=An+B对任意正整数n都成立.
(1)设A=0,求证:数列{an}是等比数列;
(2)设数列{an}是等差数列,若p<q,且
1
Sp
+
1
Sq
=
1
S11
,求p,q的值.
(3)设A>0,A≠1,且
an
an+1
≤M
对任意正整数n都成立,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=0,4an+1=4an+2
4an+1
+1
,令bn=
4an+1

(1)试判断数列{bn}是否为等差数列?并求数列{bn}的通项公式;
(2)令Tn=
b1×b3×b5×…×b(2n-1)
b2×b4×b6×…b2n
,是否存在实数a,使得不等式Tn
bn+1
2
log2(a+1)
对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由.
(3)比较bnbn+1bn+1bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3…,其中A,B为常数.数列{an}的通项公式为
an=5n-4
an=5n-4

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn
(1)证明:当b=2时,{an-n•2n-1}是等比数列;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=an+b(n∈N*,a>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求数列{bm}的前2m项和公式.

查看答案和解析>>

同步练习册答案