精英家教网 > 高中数学 > 题目详情

【题目】已知焦点在轴的椭圆的离心率与双曲线的离心率互为倒数,且过点.

1求椭圆方程;

2若直线与椭圆交于不同的两点,点,有,求的取值范围.

【答案】12.

【解析】

试题分析:1根据双曲线离心率求得椭圆离心率,即得的关系,根据表示出,即可设出椭圆方程,把点代入即可求得椭圆方程;2说明点在线段的垂直平分线上,根据整理方程组,由建立不等式,由韦达定理求得的中点坐标,可得垂直平分线方程,把中点坐标代入垂直平分线方程即可建立的关系,代入即可求得的范围.

试题解析:1双曲线,即的离心率为.由题意可得,椭圆的离心率,设椭圆方程为椭圆方程为.又点在椭圆上,椭圆的方程为.

2,由,消去并整理得

直线与椭圆有两个交点,,即

中点的坐标为,即为,所以的垂直平分线上,设的垂直平分线方程:上,

,得

将上式代入式得,即

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

(1)求的方程;

(2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82848486868688888888若样本B数据恰好是样本A数据都加上2后所得数据AB两样本的下列数字特征对应相同的是(  )

A. 众数 B. 平均数

C. 中位数 D. 标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)时,求函数的最小值

(2)若函数的最小值为,令,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的焦点在轴上.

(1)若椭圆的焦距为1,求椭圆的方程;

(2)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线轴于点,并且.证明:当变化时,点在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:直线与圆有两个交点;命题:.

(1)若为真命题,求实数的取值范围;

(2)若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,离心率为,椭圆与轴与左点与点的距离为

(1)求椭圆方程;

(2)过点的直线与椭圆交于不同的两点,当面积为时,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒, 以防止害虫的危害, 但采集上市时蔬菜仍存有少量的残留农药, 食用时需要用清水清洗干净, 下表是用清水(单位:千克) 清洗该蔬菜千克后, 蔬菜上残留的农药(单位:微克) 的统计表:

(1)在下面的坐标系中, 描出散点图, 并判断变量的相关性;

(2)若用解析式作为蔬菜农药残量与用水量的回归方程, ,计算平均值,完成以下表格(填在答题卡中) ,求出的回归方程.( 精确到)

(3)对于某种残留在蔬菜上的农药,当它的残留量低于微克时对人体无害, 为了放心食用该蔬菜,

估计需要用多少千克的清水清洗一千克蔬菜?(精确到,参考数据)

(附:线性回归方程中系数计算公式分别为;

, )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙二人用4张扑克牌分别是红桃2,红桃3,红桃4,方片4完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.

1分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;

2若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?

3甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.

查看答案和解析>>

同步练习册答案