【题目】命题
方程
表示椭圆,命题
恒成立;
(1)若命题
为真命题,求实数
的取值范围;
(2)若命题
为真,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付方式 | 不大于2000元 | 大于2000元 |
仅使用A | 27人 | 3人 |
仅使用B | 24人 | 1人 |
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,已知椭圆![]()
,抛物线![]()
的焦点
是
的一个顶点,设
是
上的动点,且位于第一象限,记
在点
处的切线为
.
(1)求
的值和切线
的方程(用
表示)
(2)设
与
交于不同的两点
,线段
的中点为
,直线
与过
且垂直于
轴的直线交于点
.
(i)求证:点
在定直线上;
(ii)设
与
轴交于点
,记
的面积为
,
的面积为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆心在
轴上,半径为2的圆
位于
轴右侧,且与直线
相切.
(1)求圆
的方程;
(2)在圆
上,是否存在点
,使得直线
与圆
相交于不同的两点
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,
,
,
,E为AB的中点
将
沿CE折起,使点B到达点F的位置,且平面CEF与平面ADCE所成的二面角为
.
求证:平面
平面AEF;
求直线DF与平面CEF所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线
的焦点为F,圆
,点
为抛物线上一动点.已知当
的面积为
.
![]()
(I)求抛物线方程;
(II)若
,过P做圆C的两条切线分别交y轴于M,N两点,求
面积的最小值,并求出此时P点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量
单位:万只
与相应年份
序号
的数据表和散点图
如图所示
,根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数
单位:个
关于x的回归方程
.
年份序号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年养殖山羊 |
|
|
|
|
|
|
|
|
|
根据表中的数据和所给统计量,求y关于x的线性回归方程
参考统计量:
,
;
试估计:
该县第一年养殖山羊多少万只
到第几年,该县山羊养殖的数量与第一年相比缩小了?
附:对于一组数据
,
,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
平面
,
为
边上一点,
,
.
![]()
(1)证明:平面
平面
.
(2)若
,试问:
是否与平面
平行?若平行,求三棱锥
的体积;若不平行,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510]的产品为合格品,否则为不合格品.表是甲流水线样本频数分布表,图是乙流水线样本频率分布直方图.
![]()
表甲流水线样本频数分布表
产品质量/克 | 频数 |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
(1)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;
(2)由以上统计数据作出2×2列联表,并回答能否有95%的把握认为“产品的包装质量与两条自动包装流水线的选择有关”
χ2![]()
甲流水线 | 乙流水线 | 总计 | |
合格品 | |||
不合格品 | |||
总计 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com