【题目】(本小题满分
分)已知圆
有以下性质:
①过圆
上一点
的圆的切线方程是
.
②若
为圆
外一点,过
作圆
的两条切线,切点分别为
,则直线
的方程为
.
③若不在坐标轴上的点
为圆
外一点,过
作圆
的两条切线,切点分别为
,则
垂直
,即
,且
平分线段
.
(1)类比上述有关结论,猜想过椭圆
上一点
的切线方程(不要求证明);
(2)过椭圆
外一点
作两直线,与椭圆相切于
两点,求过
两点的直线方程;
(3)若过椭圆
外一点
(
不在坐标轴上)作两直线,与椭圆相切于
两点,求证:
为定值,且
平分线段
.
【答案】(1)![]()
(2)![]()
(3)见解析.
【解析】分析:(1)根据类比推理可得结论.(2)设
,结合(1)可得过点
的切线方程,根据两切线都过点
可得
和
,再结合过两点的直线唯一的特点可得直线
的方程是
.(3)先由直线
的方程可得
,又
,所以
.令线段
的中点为
,由点差法得
,于是
,故
,所以
三点共线,从而得到
平分线段
.
详解:(1)过椭圆
上一点
的切线方程是
.
(2)设
.
由(1)得过椭圆上点
的切线
的方程是
,
∵直线
过点
,
∴
,
同理
.
又过两点A,B的直线是唯一的,
∴直线
的方程是
.
(3)由(2)知过
两点的直线方程是
,
∴
,
又
,
∴
为定值.
设
线段
的中点为
,则
.
∵点
均在椭圆上,
∴
①,
②
②-①得
,
即
,
∴
,
又![]()
∴
,
又
,
∴
,
∴
三点共线,
∴
平分线段
.
科目:高中数学 来源: 题型:
【题目】如图,在以
、
、
、
、
、
为顶点的五面体中,平面
平面
,
,四边形
为平行四边形,且
.
![]()
(1)求证:
;
(2)若
,
,直线
与平面
所成角为
,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点
与两个定点
,
的距离之比等于5.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为
,过点
的直线
被
所截得的线段的长为 8,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(a>0,a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|m﹣1≤x≤m+1,x∈R,m∈R}
(1)若A∩B=[1,3],求实数m的值;
(2)若ARB,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆
的方程为
(
为参数).以坐标原点为极点,
轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线
的极坐标方程为![]()
(1)当
时,判断直线
与圆
的关系;
(2)当
上有且只有一点到直线
的距离等于
时,求
上到直线
距离为
的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,若f(x)=mn. (I)求f(x)的单调递增区间;
(II)己知△ABC的三内角A,B,C对边分别为a,b,c,且a=3,f
,sinC=2sinB,求A,c,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入
(单位:万元)满足
,乙城市收益Q与投入
(单位:万元)满足
,设甲城市的投入为
(单位:万元),两个城市的总收益为
(单位:万元).
(1)当甲城市投资50万元时,求此时公司总收益;
(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com