精英家教网 > 高中数学 > 题目详情
已知a>0,b<0,且a+b≠0,令a1=a,b1=b,且对任意的正整数k,当ak+bk≥0时,ak+1=
1
2
ak-
1
4
bk
bk+1=
3
4
bk
;当ak+bk<0时,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

(1)求数列{an+bn}的通项公式;
(2)若对任意的正整数n,an+bn<0恒成立,问是否存在a,b使得{bn}为等比数列?若存在,求出a,b满足的条件;若不存在,说明理由;
(3)若对任意的正整数n,an+bn<0,且b2n=
3
4
b2n+1
,求数列{bn}的通项公式.
(1)当ak+bk≥0时,ak+1=
1
2
ak-
1
4
bk
bk+1=
3
4
bk

∴ak+1+bk+1=
1
2
ak-
1
4
bk+
3
4
bk
=
1
2
(ak+bk)

当ak+bk<0时,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

∴ak+1+bk+1=-
1
4
ak+
1
2
bk+
3
4
ak
=
1
2
(ak+bk)

∴总有ak+1+bk+1=
1
2
(ak+bk)

∵a1=a,b1=b,
∴a1+b1=b+a
∴数列{an+bn}是以a+b为首项,以
1
2
为公比的等比数列
∴bn+an=(b+a)(
1
2
)n-1
(2)∵an+bn<0恒成立
∴(b+a)(
1
2
)n-1
<0恒成立
∴b+a<0
∵当ak+bk<0时,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

an=a•(
3
4
)n-1

bn=(a+b)•(
1
2
)n-1-a•(
3
4
)n-1
不可能是个等比数列
故{bn}不是等比数列
(3)∵an+bn<0,bk+1=-
1
4
ak+
1
2
bk
ak+1=
3
4
ak

b2n+1=-
1
4
a2n+
1
2
b2n
a2n+1=
3
4
a2n

b2n=
3
4
b2n+1

b2n+1=
4
3
b2n
=-
1
4
a2n+
1
2
b2n

b2n=-
3
10
a2n
=-
3
10
a•(
3
4
)2n-1

∴bn=-
3a
10
•(
3
4
)n-1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,b>0,且ab=1,α=a+
4
a
,β=b+
4
b
,则α+β的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在平面直角坐标系xOy中,判断曲线C:
x=2cosθ
y=sinθ
(θ为参数)与直线l:
x=1+2t
y=1-t
(t为参数)是否有公共点,并证明你的结论.
(2)已知a>0,b>0,a+b=1,求证:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,a+b=1,则a+
1
a
+b+
1
b
的最小值为
5
5

查看答案和解析>>

科目:高中数学 来源:松江区二模 题型:解答题

已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

同步练习册答案