甘肃省西北师大附中2009届高三5月最后一考
数学文科
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.
的值为( )
A.
B.
C.
D.![]()
2.如果复数
,则
的展开式(按
的升幂排列)的第5项是( )
A .35 B.
C.
D.
3.已知
为偶函数,且
,当
时,
,若
则
( )
A.
B.
C.
D.![]()
4.已知
,则下列结论中正确的是( )
A.函数
的周期为
B.函数
的最小值为![]()
C.将
的图象向左平移
单位后得
的图象
D.将
的图象向右平移
单位后得
的图象
5.若抛物线
的焦点与双曲线
的右焦点重合,则
的值为( )
A.4 B.
C.2 D.![]()
6.在样本的频率分布直方图中,共有
个小长方形,若其中一个小长方形的面积等于其他
个小长方形面积和的四分之一,样本容量为
,则该小长方形这一组的频数为(
)
A.32 B.
7. 已知函数
在
上单调递减,那么实数
的取值范围是( )
A.
B.
C.
D.![]()
8.如右图所示的几何体ABCDEF中,ABCD是平行四边形且AE∥CF,
六个顶点任意两点连线能组成异面直线的对数是( )
A.36 B.28 C.39 D.20
9. 设实数
满足
,则有(
)
A.
B.
C.
D.![]()
10.已知
为坐标原点,点
在
内,且
,设
,则
( )
A.
B.
C.
D.![]()
11.若
条件满足
则
的最小值为( )
A.
B.
C.
D.![]()
12. 已知
在区间
上是减函数,那么
( )
A.有最大值
B.有最大值
C.有最小值
D.有最小值![]()
二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)
13.不等式(x-1)|x2-2x-3|≥0的解集为_________.
14.霓红灯的一个部位由七个小灯泡组成,如图:○○○○○○○,每个灯泡均可亮出红色或黄色,现设计每次变换只闪亮其中三个灯泡,且相邻两个不同时亮,则一共可呈现____________种不同的变换形式.(用数字作答)
15.设函数
=
.
16.已知
且关于
的函数
在
上有极值,则
的夹角范围为
答题卡
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
题号
13
14
15
16
答案
三、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)
已知
为坐标原点,![]()
![]()
⑴求
的单调递增区间;
⑵若
的定义域为
,值域为
,求
的值
18.(本小题满分10分)从北京到西安的某三列火车正点到达的概率分别为
。求
⑴这三列火车恰有两列正点到达的概率;
⑵这三列火车至少有两列误点到达的概率。
19.(本小题满分12分)
如图,已知四棱锥P―ABCD的底面是直角梯形,
,AB=BC=PB=PC=2CD=2,侧面
底面ABCD,O是BC中点,AO交BD于E.
(1)求证:
;(2)求二面角
的大小;
(3)求证:平面
平面PAB.
20.(本题满分12分)
设
是正数组成的数列,其前
项和为
,并且对于所有的正整数
,
与
的等差中项等于
与
的等比中项,
Ⅰ求数列
的通向公式;
Ⅱ令
,求数列
的前
项和。
21. (本小题满分13分)
22. (本小题满分13分)
已知函数![]()
⑴若
图像上的点
处的斜率为
,,求
的极大值
⑵若
在区间
上是单调减函数,求
的最小值;
一、A;A;C;D;A;A; C;C;B;C;C;A
二、13、
或
; 14、80; 15、-2;16、
;
17、解:⑴----文科数学.files/image237.gif)
………………………………………3分
时,由
得函数的递增区间为----文科数学.files/image245.gif)
时,由
得函数的递增区间为
…………………………………………5分
⑵----文科数学.files/image253.gif)
……………………………………………7分
时,
得:
(舍)
时,
得----文科数学.files/image263.gif)
综上,
……………………………………………………10分
18、解:用
分别表示三列火车正点到达的事件,则
----文科数学.files/image269.gif)
⑴恰有两列火车正点到达的概率记为
,则
……………………………………………4分
⑵用
表示误点的列数,则至少两列误点可表示为:
----文科数学.files/image277.gif)
………………………………………………………6分
19.解:方法一:(I)证明:
,
又
平面
平面ABCD,平面
平面ABCD=BC,
----文科数学.files/image289.gif)
平面ABCD ……2分
在梯形ABCD中,可得----文科数学.files/image293.gif)
,即----文科数学.files/image297.gif)
在平面ABCD内的射影为AO,
……4分
(II)解:
,且平面
平面ABCD
平面PBC,
平面PBC,----文科数学.files/image309.gif)
为二面角P―DC―B的平面角 ……6分
是等边三角形
即二面角P―DC―B的大小为
…8分
(III)证明:取PB的中点N,连结CN,
①
,且平面
平面ABCD,
平面PBC ……10分
平面PAB
平面
平面PAB ②
由①、②知
平面PAB…………..10分
连结DM、MN,则由MN//AB//CD,
,
得四边形MNCD为平行四边形,
,
平面PAB.
平面PAD
平面
平面PAB ……………….12分
方法二:取BC的中点O,因为
是等边三角形,
由侧面
底面ABCD 得
底面ABCD ……1分
以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立如图所示的空间直角坐标系O―xyz……2分
----文科数学.files/image345.gif)
(I)证明:
,则在直角梯形中,----文科数学.files/image349.gif)
在等边三角形PBC中,
……3分
----文科数学.files/image353.gif)
----文科数学.files/image357.gif)
,即
…4分
(II)解:取PC中点N,则----文科数学.files/image363.gif)
----文科数学.files/image365.gif)
平面PDC,显然
,且
平面ABCD
所夹角等于所求二面角的平面角 ……6分
----文科数学.files/image375.gif)
,
二面角
的大小为
……8分
(III)证明:取PA的中点M,连结DM,则M的坐标为----文科数学.files/image381.gif)
又
……10分
,----文科数学.files/image387.gif)
即----文科数学.files/image391.gif)
平面PAB,
平面
平面PAB ……12分
20.解:Ⅰ由已知得:
……………………………………2分
当
解得:
…………………………………………3分
当
时,
,带入上式得:----文科数学.files/image403.gif)
配方得:----文科数学.files/image405.gif)
所以
……………………………………………5分
所以
……………………………………7分
Ⅱ----文科数学.files/image411.gif)
……………………………………………………………………10分
………………………12分
22解:⑴----文科数学.files/image465.gif)
则
,所以
……………………………3分
;由此可知
当
时,函数
单调递增
当
时,函数
单调递减,
当
时,函数取极大值
……………………………………………………………6分
⑵
在区间
上是单调减函数,
所以
在区间
上恒成立,有二次函数的图像可知:
;令
……………………………………………9分
当直线
经过交点
时,取得最小值
…………………………………13分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com