6.已知定义在R上的函数y=f(x)存在反函数y= f-1(x).若函数y=f(x+1)的反函数是f-1(x-1).且f(0)=1.则f(12)= A.1 B.一1 C.13 D.14 查看更多

 

题目列表(包括答案和解析)

已知定义在正实数集R上的函数y=f(x)满足:①对任意a,b∈R都有f(a•b)=f(a)+f(b)②当x>1时,f(x)<0   ③f(3)=-1
(1)求f(1)的值
(2)证明函数y=f(x)在R上为单调减函数
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f(
p
q
)+
1
2
=0,p,q∈R+},问是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在则说明理由.

查看答案和解析>>

已知定义在正实数集R上的函数y=f(x)满足:①对任意a,b∈R都有f(a•b)=f(a)+f(b)②当x>1时,f(x)<0  ③f(3)=-1
(1)求f(1)的值
(2)证明函数y=f(x)在R上为单调减函数
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f(数学公式)+数学公式=0,p,q∈R+},问是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在则说明理由.

查看答案和解析>>

已知定义域在R上的单调函数y=f(x),存在实数x0,使得对于任意的实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且对任意正整数n,有an=
1
f(n)
,bn=f(
1
2n
)+1,记Tn=b1b2+b2b3+…+bnbn+1,求an与Tn
(3)在(2)的条件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
对任意不小于2的正整数n都成立,求实数x的取值范围.

查看答案和解析>>

已知定义域在R上的单调函数y=f(x),存在实数x0,使得对于任意的实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且对任意正整数n,有an=
1
f(n)
,bn=f(
1
2n
)+1,记Tn=b1b2+b2b3+…+bnbn+1,求an与Tn
(3)在(2)的条件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
对任意不小于2的正整数n都成立,求实数x的取值范围.

查看答案和解析>>

已知定义域在R上的单调函数y=f(x),存在实数x,使得对于任意的实数x1,x2,总有f(xx1+xx2)=f(x)+f(x1)+f(x2)恒成立.
(1)求x的值;
(2)若f(x)=1,且对任意正整数n,有an=,bn=f()+1,记Tn=b1b2+b2b3+…+bnbn+1,求an与Tn
(3)在(2)的条件下,若不等式对任意不小于2的正整数n都成立,求实数x的取值范围.

查看答案和解析>>


同步练习册答案