1. 已知.直线:和圆:. (Ⅰ)求直线斜率的取值范围, (Ⅱ)直线能否将圆分割成弧长的比值为的两段圆弧?为什么? 解:(Ⅰ)直线的方程可化为. 直线的斜率.····························································································· 2分 因为. 所以.当且仅当时等号成立. 所以.斜率的取值范围是.·········································································· 5分 (Ⅱ)不能.················································································································· 6分 由(Ⅰ)知的方程为 .其中. 圆的圆心为.半径. 圆心到直线的距离 .·············································································································· 9分 由.得.即.从而.若与圆相交.则圆截直线所得的弦所对的圆心角小于. 所以不能将圆分割成弧长的比值为的两段弧. 12分 查看更多

 

题目列表(包括答案和解析)

       已知,直线和圆

(Ⅰ)求直线斜率的取值范围;

(Ⅱ)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?

查看答案和解析>>

       已知,直线和圆

(Ⅰ)求直线斜率的取值范围;

(Ⅱ)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?

查看答案和解析>>

已知双曲线C:和圆O:x2+y2=b2(其中原点O为圆心),过双曲线C上一点P(x,y)引圆O的两条切线,切点分别为A、B.
(1)若双曲线C上存在点P,使得∠APB=90°,求双曲线离心率e的取值范围;
(2)求直线AB的方程;
(3)求三角形OAB面积的最大值.

查看答案和解析>>

已知双曲线C:和圆O:x2+y2=b2(其中原点O为圆心),过双曲线C上一点P(x,y)引圆O的两条切线,切点分别为A、B.
(1)若双曲线C上存在点P,使得∠APB=90°,求双曲线离心率e的取值范围;
(2)求直线AB的方程;
(3)求三角形OAB面积的最大值.

查看答案和解析>>

已知双曲线C:和圆O:x2+y2=b2(其中原点O为圆心),过双曲线C上一点P(x,y)引圆O的两条切线,切点分别为A、B.
(1)若双曲线C上存在点P,使得∠APB=90°,求双曲线离心率e的取值范围;
(2)求直线AB的方程;
(3)求三角形OAB面积的最大值.

查看答案和解析>>


同步练习册答案