解题注意:①考虑圆锥曲线焦点位置,抛物线还应注意开口方向,以避免错误②求圆锥曲线方程常用待定系数法.定义法.轨迹法③焦点.准线有关问题常用圆锥曲线定义来简化运算或证明过程④运用假设技巧以简化计算.如:中心在原点,坐标轴为对称轴的椭圆方程可设为Ax2+Bx2=1;共渐进线的双曲线标准方程可设为为参数,≠0);抛物线y2=2px上点可设为(,y0);直线的另一种假设为x=my+a;⑤解焦点三角形常用正余弦定理及圆锥曲线定义. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;=

(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论

(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆+ =1(a>b>0)提出一个有深度的结论,并证明之.

 

查看答案和解析>>

(本小题满分14分)
(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;=
(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论
(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆+ =1(a>b>0)提出一个有深度的结论,并证明之.

查看答案和解析>>

举一些现实生活中的例子,说明圆锥曲线的参数方程同圆锥曲线的普通方程相比有何特点,圆锥曲线的参数方程在解题中有什么样的作用?

查看答案和解析>>

在使用圆锥曲线的参数方程解题时,需要能够正确地把普通方程转化为参数方程.那么,在把普通方程转化为参数方程时,是否会出现不同的结果呢?

查看答案和解析>>

(2009•青浦区二模)(文)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0>2,试用x0表示线段AB中点的横坐标.

查看答案和解析>>


同步练习册答案