10.如图.A是直线上一点.AB为线段.P在直线上.且△PAB为等腰三角形. 符合条件的点P有 个. 10题图 11题图 12题图 查看更多

 

题目列表(包括答案和解析)

如图,已知直线y=-m(x-4)(m>0)与x轴、y轴分别交于A、B两点,以OA为直径作半圆,圆心为C,过A作x轴的垂线AT,M是线段OB上一动点(与O点不重合),过M点作半圆的切线交直线AT于N,交AB于F,切点为P,连结CN、CM。
(1)证明:∠MCN=90°;
(2)设OM=x,AN=y,求y关于x的函数解析式;
(3)若OM=1,当m为何值时,直线AB恰好平分梯形OMNA的面积。

查看答案和解析>>

如图,将矩形OABC放置在平面直角坐标系中,点D在边OC上,点E在边OA上,把矩形沿直线DE翻折,使点O落在边AB上的点F处,且tan∠BFD=,若线段OA的长是一元二次方程x2-7x-8=0的一个根,又2AB=3OA,请解答下列问题:
(1)求点B、F的坐标;
(2)求直线ED的解析式;
(3)在直线ED、FD上是否存在点M、N,使以点C、D、M、N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由。

查看答案和解析>>

如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根。
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD。
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标。

查看答案和解析>>

如图,在平面直角坐标系中,已知点B(-2,0),A(m,0)(-<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F。

(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G,若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由。

查看答案和解析>>

如图,已知直线y=-x+2与抛物线y=a(x+2)2相交于A、B两点,点A在y轴上,M为抛物线的顶点。
(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为1,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案