如图,点E.A.B.F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD. 说出∠CAD=∠DBC的理由 查看更多

 

题目列表(包括答案和解析)

如图,直角梯形ABCD和正方形EFGC的边BC、CG在同一条直线上,AD∥BC,AB⊥BC于点B,AD=4,AB=6,BC=8,直角梯形ABCD的面积与正方形EFGC的面积相等,将直角梯形ABCD沿BG向右平行移动,当点C与点G重合时停止移动.设梯形与正方形重叠部分的面积为S.
(1)求正方形的边长;
(2)设直角梯形ABCD的顶点C向右移动的距离为x,求S与x的函数关系式;
(3)当直角梯形ABCD向右移动时,它与正方形EFGC的重叠部分面积S能否等精英家教网于直角梯形ABCD面积的一半?若能,请求出此时运动的距离x的值;若不能,请说明理由.

查看答案和解析>>

如图所示,在平面直角坐标系中,二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B精英家教网,与y轴交点为C,连接BP并延长交y轴于点D.
(1)写出点P的坐标;
(2)连接AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;
(3)在(2)的条件下,连接BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S,选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大写出最大值.

查看答案和解析>>

如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AD=2cm,BC=6cm,AB=4
3
cm.动点P从点A出发,沿A→D→C的路线以2cm/s的速度向点C运动;动点Q从点C出发,沿C→B的路线以1cm/s的精英家教网速度向点B运动.若点P、Q同时出发,当其中有一点到达终点时整个运动随之结束.设运动时间为t(s).
(1)当t为何值时,PQ与DC平行?
(2)在整个运动过程中,设△PBQ的面积为S(cm2),求S(cm2)与t(s)之间的函数关系式;
(3)当点P运动到DC上时,以P为圆心、PD长为半径作⊙P,以B为圆心、BQ长为半径作⊙B,问:是否存在这样的t,使得⊙P与⊙B相切?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

如图1,两个等腰直角三角板ABC和DEF有一条边在同一条直线l上,DE=2,AB=1.将直线EB绕点E逆时针旋转45°,交直线AD于点M.将图1中的三角板ABC沿直线l向右平移,设C、E两点间的距离为k.
解答问题:
(1)①当点C与点F重合时,如图2所示,可得
AM
DM
的值为
1
1
;②在平移过程中,
AM
DM
的值为
k
2
k
2
(用含k的代数式表示);
(2)将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请补全图形,计算
AM
DM
的值;
(3)将图1中的三角板ABC绕点C逆时针旋转α度,0<α≤90,原题中的其他条件保持不变.计算
AM
DM
的值(用含k的代数式表示).

查看答案和解析>>

如图,A.B.C.D四点在同一平面内,并且每三点都不在同一条直线上,读下列语句,按要求画出图形.
(1)连结AD,并廷长线段DA;
(2)连结BC,并反向延长线段BC;
(3)连结AC、BD相交于O;
(4)DA的廷长线与BC的反向延长线交于点P.

查看答案和解析>>


同步练习册答案