6.面与面相交成 .点动成 .面动成 . 查看更多

 

题目列表(包括答案和解析)

如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA边在直线上,AB边在直线上。
(1)直接写出O、A、B、C的坐标;
(2)在OB上有一动点P,以O为圆心、OP为半径画弧,分别交边OA、OC 于M、N(M、N可以与A、C重合),作⊙Q与边AB、BC和都相切,⊙Q分别与边AB、BC相切于点D、E,设⊙Q的半径为r,OP的长为y,求y与r 之间的函数关系式,并写出自变量r的取值范围;
(3)以O为圆心、OA为半径作扇形OAC,请问在菱形OABC中,除去扇形OAC后剩余部分内,是否可以截下一个圆,使得它与扇形OAC刚好围成一个圆锥?若可以,求出这个圆的面积;若不可以,说明理由。

查看答案和解析>>

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n。
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2)在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由。

查看答案和解析>>

如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,都以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP∥OC,交AC于点P,连结MP,已知动点运动了x秒,△MPA的面积为S。
(1)求点P的坐标。(用含x的代数式表示)
(2)写出S关于x的函数关系式,并求出S的最大值。
(3)当△APM与△ACO相似时,点P的位置有几种情况?选择一种,并求出点P的坐标。
(4)△PMA能否成为轴对称图形?如能,求出所有点P的坐标;如不能,说明理由。

查看答案和解析>>

如图抛物线y=ax2+bx+3与x轴相交于点A(-1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.

(1)求抛物线的解析式;

(2)当四边形ODEF是平行四边形时,求点P的坐标;

(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式。(不必说明平分平行四边形面积的理由)

       第26题图

       备用图

         备用图‚

查看答案和解析>>

如图所示,菱形ABCD的边长为6cm,∠DAB=60°,点M是边AD上一点,且DM=2cm,点E、F分别从A、C同时出发,以1cm/s的速度分别沿边AB、CB向点B运动,EM、CD的延长线相交于G,GF交AD于O。设运动时间为x(s),△CGF的面积为y(cm2)。
(1)当x为何值时,GD的长度是2cm?
(2)求y与x之间的函数关系式;
(3)是否存在某一时刻,使得线段GF把菱形ABCD分成的上、下两部分的面积之比为1:5?若存在,求出此时x的值;若不存在,说明理由。

查看答案和解析>>


同步练习册答案