题目列表(包括答案和解析)
(本小题满分16分)知函数f(x)=ax3+bx2+cx+d(a、b、c、d
R),且函数f(x)的图象关于原点对称,其图象x=3处的切线方程为8x-y-18=0.
(1)求f(x)的解析式;
(2)是否存在区间
,使得函数f(x)的定义域和值域均为
?若存在,求出这样的一个区间
;若不存在,则说明理由;
(3)若数列{an}满足:a1≥1,an+1≥
,试比较+++…+与1的大小关系,并说明理由.
(本小题满分16分)
已知
(
,
为此函数的定义域)同时满足下列两个条件:①函数![]()
在
内单调递增或单调递减;②如果存在区间
,使函数
在区间
上的值域为
,那么称
,
为闭函数。请解答以下问题:
(1)判断函数
是否为闭函数?并说明理由;
(2)求证:函数
(
)为闭函数;
(3)若
是闭函数,求实数
的取值范围.
(本小题满分16分)
已知
(
,
为此函数的定义域)同时满足下列两个条件:①函数![]()
在
内单调递增或单调递减;②如果存在区间
,使函数
在区间
上的值域为
,那么称
,
为闭函数。请解答以下问题:
(1)判断函数
是否为闭函数?并说明理由;
(2)求证:函数
(
)为闭函数;
(3)若
是闭函数,求实数
的取值范围.
(本小题16分)函数
的定义域为{x| x ≠1},图象过原点,且
.
(1)试求函数
的单调减区间;
(2)已知各项均为负数的数列
前n项和为
,满足
,求证:
;
(3)设
,是否存在
,使得![]()
?若存在,求出
,证明结论;若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com