题目列表(包括答案和解析)
判断题:
(1)
两个长度相等的向量一定相等;[
](2)
相等的向量起点必相同;[
](3)
平行向量就是共线向量;[
](4)
若向量a的模小于b的模,则a<b;[
](5)
质量、动量、功、加速度都是向量;[
](6)
[
](7)
向量a与b平行,则a与b的方向相同或相反;[
](8)
在△ABC中,[
](9)
若向量a与b有共同的起点,则以b的终点为起点,以a的终点为终点的向量等于b-a;[
](10)
若[
](11)
若a·b=0,则[
](12)
若a·b=a·c,且a≠0,则b=c;[
](13)
向量a在b方向上的射影是一个模等于[ ]
(14)
.
[
](8分) 抛掷骰子,是大家非常熟悉的日常游戏了.
某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.
方案1:总点数是几就送礼券几十元.
|
总点数 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
礼券额 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
110 |
120 |
方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.
|
总点数 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
礼券额 |
20 |
40 |
60 |
80 |
100 |
120 |
100 |
80 |
60 |
40 |
20 |
方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.
|
总点数 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
礼券额 |
120 |
100 |
80 |
60 |
40 |
20 |
40 |
60 |
80 |
100 |
120 |
如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数 学 | 1.3 | 12.3 | 25.7 | 36.7 | 50.3 | 67.7 | 49.0 | 52.0 | 40.0 | 34.3 |
| 物 理 | 2.3 | 9.7 | 31.0 | 22.3 | 40.0 | 58.0 | 39.0 | 60.7 | 63.3 | 42.7 |
| 学生序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数 学 | 78.3 | 50.0 | 65.7 | 66.3 | 68.0 | 95.0 | 90.7 | 87.7 | 103.7 | 86.7 |
| 物 理 | 49.7 | 46.7 | 83.3 | 59.7 | 50.0 | 101.3 | 76.7 | 86.0 | 99.7 | 99.0 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
| 成绩 | 2a=6,
|
a=3,c=
|
|
|
△=144k2-12(1+3k2)>0, | |||||||||||||||||||||
| 频数 | 4 | 20 | 15 | 10 | 1 |
| 成绩 | k2>
|
A(x1,y1),B(x2,y2) | x1+x2=
|
y1+y2=k(x1+x2)-4=k•
|
E(
| ||||||||||||||
| 频数 | 1 | 11 | 23 | 13 | 2 |
| 成绩小于100分 | 成绩不小于100分 | 合计 | |||||||
| 甲班 |
|
26 | 50 | ||||||
| 乙班 | 12 | k=±1 | 50 | ||||||
| 合计 | 36 | 64 | 100 |
| x-y-2=0或x+y+2=0. | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | ||
a=
|
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转速度而变化,下表为抽样试验的结果:
(1)利用散点图或相关系数r的大小判断变量y对x是否线性相关?为什么?
(2)如果y与x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?
(最后结果精确到0.001.参考数据:
,16×11+14×9+12×8+8×5=438,162+142+122+82=660,112+92+82+52=291).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com