3.解: .即①.或② 当时.①得.与矛盾,②不成立 当时.①得.恒成立.即,②不成立 显然.当时.①得.不成立. ②得得 ∴或 查看更多

 

题目列表(包括答案和解析)

先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
x+3>0
x-3>0
(2)
x+3<0
x-3<0

解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:求分式不等式
5x+1
2x-3
<0
的解集.

查看答案和解析>>

如下图,等腰直角三角形ABC中,∠A=90°,BCDAACDAAB,若DA=1,且EDA的中点.求异面直线BECD所成角的余弦值.

[分析] 根据异面直线所成角的定义,我们可以选择适当的点,分别引BEDC的平行线,换句话说,平移BE(或CD).设想平移CD,沿着DA的方向,使D移向E,则C移向AC的中点F,这样BECD所成的角即为∠BEF或其补角,解△EFB即可获解.

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

若下列方程:,至少有一个方程有实根,试求实数的取值范围.

解:设三个方程均无实根,则有

解得,即

所以当时,三个方程至少有一个方程有实根.

 

查看答案和解析>>

设F1,F2分别是双曲线=1的两个焦点,点P到焦点F1的距离等于16.5,求点P到焦点F2的距离.

对于此变式,下列解法正确吗?为什么?

解:双曲线=1的实轴长为16,

由||PF2|-|PF1||=16,即||PF2|-16.5|=16,

解得|PF2|=0.5或32.5.

查看答案和解析>>


同步练习册答案