16.对称轴与抛物线的交点(0.0)为抛物线的顶点.且抛物线的准线垂直于对称轴.焦点的对称点在准线上.故所求准线方程为. 查看更多

 

题目列表(包括答案和解析)

抛物线x2=8y的准线与坐标轴交于A点,过A作直线与抛物线交于M、N两点,点B在抛物线的对称轴上,P为MN中点,且()•=0.
(1)求||的取值范围;
(2)是否存在这样的点B,使得△BMN为等腰直角三角形,且∠B=90°.若存在,求出点B;若不存在,说明理由.

查看答案和解析>>

抛物线=2px(p>0)的准线与对称轴相交于S,过抛物线的焦点F作倾斜角为的弦AB,试问∠ASB的大小与p的取值有关吗?证明你的结论.

查看答案和解析>>

已知抛物线的顶点在原点,对称轴为y轴,且准线方程为y=-
1
2
.
直线l过M(1,0)与抛物线交于A,B两点,点P在y轴的右侧且满足
OP
=
1
2
OA
+
1
2
OB
(O为坐标原点).
(Ⅰ)求抛物线的方程及动点P的轨迹方程;
(Ⅱ)记动点P的轨迹为C,若曲线C的切线斜率为λ,满足
MB
MA
,点A到y轴的距离为a,求a的取值范围.

查看答案和解析>>

已知抛物线C:y2=ax的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点,直线l与抛物线C相交于A、B两点,点A关于x轴的对称点为D.
(1)求抛物线C的方程.
(2)证明:点F在直线BD上;
(3)设
FA
FB
=
8
9
,求△BDK的面积.

查看答案和解析>>

已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为
2
,过抛物线C1的焦点F作倾斜角为
π
4
的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(1)求点P和Q的坐标;
(2)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程.

查看答案和解析>>


同步练习册答案