题目列表(包括答案和解析)
(本小题满分16分)![]()
点,点A1(x1,0),A2(x
,0),…,An(xn,0),…顺次为x轴上的点,其中x1=a(0<a≤1).对于任意n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.(1)求数列{yn}的通项公式,并证明它为等差数列;(2)求证:x
- x
是常数,并求数列{ x
}的通项公式;(3)上述等腰ΔAnBnAn+1中是否可能存在直角三角形,若可能,求出此时a的值;若不可能,请说明理由.
已知点B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)顺次为直线y=
x+
上的点,点A1(x1,0),A2(x2,0),…,An(xn,0),…顺次为x轴上的点,其中x1=a(0<a<1).对于任意n∈N*,点An,Bn,An+1构成以Bn为顶点的等腰三角形.
(1)求数列{yn}的通项公式,并证明它为等差数列;
(2)求证:xn+2-xn是常数,并求数列{xn}的通项公式;
(3)上述等腰△AnBnAn+1中是否可能存在直角三角形,若可能,求出此时a的值;若不可能,请说明理由.
已知点B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N)顺次为直线
上的点,点A1(x1,0),A2(x2,0),…,An(xn,0)顺次为x轴上的点,其中x1=a(0<a<1).对于任意自然数n,点An,Bn,An+1构成以Bn为顶点的等腰三角形.
(1)求数列{yn}的通项公式,并证明它为等差数列;
(2)求证:xn+2-xn是常数,并求数列{xn}的通项公式;
(3)上述等腰△AnBnAn+1中是否可能存在直角三角形,若可能,求出此时a的值;若不可能,请说明理由.
已知点B1(1,y1),B2(2,y2),…,Bn(n,yn),…,(n∈N)顺次为直线
上的点,点A1(x1,0),A2(x2,0),…,An(xn,0)顺次为x轴上的点,其中x1=a(0<a<1).对于任意自然数n,点An,Bn,An+1构成以Bn为顶点的等腰三角形.
(1)求数列{yn}的通项公式,并证明它为等差数列;
(2)求证:xn+2-xn是常数,并求数列{xn}的通项公式;
(3)上述等腰△AnBnAn+1中是否可能存在直角三角形,若可能,求出此时a的值;若不可能,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com