(Ⅱ)若数列{an}的首项是1.且满足.(1)证明数列为等差数列,(2)求{an}的前n项和Sn. 查看更多

 

题目列表(包括答案和解析)

数列{an}的首项a1=1,前n项和为Sn,且3tSn-(2t+3)Sn-1=3t(t为常数,t≠-
3
2
,t≠0,n≥2)
(1)求证:{an}是等比数列;
(2)设{an}的公比为f(t),数列{bn}(满足b1=1,bn=f(
1
bn-1
)(n=2,3,…)
,求bn
(3)数列{cn}的通项为cn=
(12)log8an(n为奇数)
(13)bn(n为偶数)
(14)
,那么是否存在实数t,使得数列{(-1)ncn+cn+1}中的每一项都大于1?若存在,求出t的范围;若不存在,请说明理由.

查看答案和解析>>

数列{an}的首项a1=1,前n项和为Sn,且3tSn-(2t+3)Sn-1=3t(t为常数,,t≠0,n≥2)
(1)求证:{an}是等比数列;
(2)设{an}的公比为f(t),数列{bn}(满足b1=1,,求bn
(3)数列{cn}的通项为,那么是否存在实数t,使得数列{(-1)ncn+cn+1}中的每一项都大于1?若存在,求出t的范围;若不存在,请说明理由.

查看答案和解析>>

若数列An=a1,a2,…,an(n≥2)满足|an+1-an|=1(k=1,2,…,n-1),数列An为E数列,记S(An)=a1+a2+…+an
(Ⅰ)写出一个满足a1=as=0,且S(As)>0的E数列An
(Ⅱ)若a1=12,n=2000,证明:E数列An是递增数列的充要条件是an=2011;
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列An,使得S(An)=0?如果存在,写出一个满足条件的E数列An;如果不存在,说明理由.

查看答案和解析>>

若数列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).请按照要求完成下列各题,并将答案填在答题纸的指定位置上.
(1)可考虑利用算法来求am,bm的值,其中m为给定的数据(m≥2,m∈N).右图算法中,虚线框中所缺的流程,可以为下面A、B、C、D中的
ACD
ACD

(请填出全部答案)
A、B、
C、D、

(2)我们可证明当a≠b,5a≠4b时,{an-bn}及{5an-4bn}均为等比数列,请按答纸题要求,完成一个问题证明,并填空.
证明:{an-bn}是等比数列,过程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0为首项,以
3
3
为公比的等比数列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0为首项,以
2
2
为公比的等比数列
(3)若将an,bn写成列向量形式,则存在矩阵A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,请回答下面问题:
①写出矩阵A=
-24
-57
-24
-57
;  ②若矩阵Bn=A+A2+A3+…+An,矩阵Cn=PBnQ,其中矩阵Cn只有一个元素,且该元素为Bn中所有元素的和,请写出满足要求的一组P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
Q=
1
1
; ③矩阵Cn中的唯一元素是
2n+2-4
2n+2-4

计算过程如下:

查看答案和解析>>

已知数列{an}的首项a1=4,且当n≥2时,an-1an-4an-1+4=0,数列{bn}满足bn=
1
2-an
(n∈N*
(Ⅰ)求证:数列{bn}是等差数列,并求{bn}的通项公式;
(Ⅱ)若cn=4bn•(nan-6)(n=1,2,3…),如果对任意n∈N*,都有cn+
1
2
t≤2t2
,求实数t的取值范围.

查看答案和解析>>

一、选择题:

1―5:ACCCB  6―10:CDACD   11―12:BC  

二、填空题:

13.2  14.   15.5   16.①   ②球的体积函数的导数等于球的表面积函数

三、解答题:

17.(本小题满分12分)

解:(I)……………………2分

……………………4分

       ……………………………………………………………………5分

   (II)B均为锐角且B<A

    又C为钝角

    ∴最短边为b……………………………………………………7分

    由,解得………………………………9分

    又…………………………12分

18.(本小题满分12分)

       解:(I)

………………………………3分

…………………………………………………4分

   (II)令.

    若时,当时,函数

    …………………………………………………………6分

    若时,当时,函数

    …………………………………………………………8分

   (III)由

    确定单调递增的正值区间是

    由

    确定单调递减的正值区间是;………10分

    综上,当时,函数的单调递增区间为.

    当时,函数的单调递增区间为.……12分

       注:①

     的这些

等价形式中,以最好用. 因为复合函数

的中间变量是增函数,对求的单调区间来说,

只看外层函数的单调性即可.否则,利用的其它形

式,例如求单调区间是非常容易出错的. 同学们可以尝试做一

的其它形式,认真体会,比较优劣!

       ②今后遇到求类似的单调区间问题,应首先通过诱导公式将转化为标准形

式:(其中A>0,ω>0),然后再行求

解,保险系数就大了.

19.(本小题满分12分)

       解:(I)由已知……………………1分

    …………3分

由已知

∴公差d=1…………………………………………………………4分

……………………………………………………6分

   (II)设…………………………7分

    当时,k的增函数,也是k的增函数.

    ………………………………10分

    又

    *不存在,使…………………………………12分

20.(本小题满分12分)

解:恒成立

只需小于的最小值…………………………………………2分

而当时,≥3……………………………………………4分

……………………………………………………6分

存在极大值与极小值

有两个不等的实根…………………………8分

…………………………………………………………10分

要使“PQ”为真,只需

故m的取值范围为[2,6].…………………………………………………12分

21.(本小题满分12分)

解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元………1分

       依题意可得约束条件:

 

       利润目标函数…………(7分)                            

如图,作出可行域,作直线,把直线l向右上方平移至l1位置,直线经过可行域上的点M,且与原点距离最大,此时取最大值.…………10分

       解方程组,得M(20,24)

故生产甲种产品20t,乙种产品24 t,才能使此工厂获得最大利润.…………12分

22.(本小题满分14分)

解:(Ⅰ)依题意

      =5n-4    ……………………3分

(Ⅱ)(1)由

即 

    ……………………6分

即      

是以为首项,为公差的等差数列  ………………8分

(2)由(1)得

    ………………10分

       ①

∴2  ②

①-②得  

               =

  ………………14分