5.是方程的一个解.从而求得.是方程的一个解.从而求得.由此可知.方程组为解得 查看更多

 

题目列表(包括答案和解析)

   如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D.

(1)填空:PD的长为               (用含t的代数式表示);

(2)求点C的坐标(用含t的代数式表示);

(3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t的值.若不能,请说明理由;

(4)填空:在点P从O向A运动的过程中,点C运动路线的长为                            

【解析】此题考核相似三角形的判定和性质,旋转的性质

 

查看答案和解析>>

   如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D.

(1)填空:PD的长为                (用含t的代数式表示);

(2)求点C的坐标(用含t的代数式表示);

(3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t的值.若不能,请说明理由;

(4)填空:在点P从O向A运动的过程中,点C运动路线的长为                             

【解析】此题考核相似三角形的判定和性质,旋转的性质

 

查看答案和解析>>

阅读:解方程组
解:由①得(x-y)(x-2y)=0,∴x-y=0,或x-2y=0.…(第一步)
因此,原方程组化为两个方程组
分别解这两个方程组,得
原方程组的解为

填空:第一步中,运用    法将方程①化为两个二元一次方程,达到了    的目的.由第一步到第二步,将原方程组化为两个由一个二元一次方程和一个二元二次方程组成的方程组,体现了    的数学思想.第二步中,两个方程组都是运用    法达到    的目的,从而使方程组得以求解.

查看答案和解析>>

阅读:解方程组数学公式
解:由①得(x-y)(x-2y)=0,∴x-y=0,或x-2y=0.…(第一步)
因此,原方程组化为两个方程组数学公式数学公式
分别解这两个方程组,得
原方程组的解为
数学公式数学公式数学公式数学公式
填空:第一步中,运用________法将方程①化为两个二元一次方程,达到了________的目的.由第一步到第二步,将原方程组化为两个由一个二元一次方程和一个二元二次方程组成的方程组,体现了________的数学思想.第二步中,两个方程组都是运用________法达到________的目的,从而使方程组得以求解.

查看答案和解析>>

  我们知道,含有两个未知数的一个方程,一般情况下有无穷多个解.有时为了需要,要求出方程的整数解,如何将这些解一一写出呢?可以试用下面的一种简单办法.例如,求方程3x+95y=1306的整数解.

  解:由原方程得,x=.   ①

  因为x,y为整数,=435-32y+,故y=3k+2.(k为整数) ②

  把②代入①,得x=372—95k,因此(k为整数)

  又如求方程68x-9y=102的整数解.

  解:由原方程得y=.  ①

  因为x,y为整数,而-102被9除余-3,又68x=63x+5x,故5x被9除余3,x=9k+6.(k为整数)     ②

  把②代入①,得y=68k+34,因此(k为整数)

  注意:对于二元一次不定方程ax±by=c(a,b是互质的正整数,c是整数),当a,b中有一个较小时,可从考虑余数着手,求得其整数解.

  下面,请你应用上述方法解两个问题:

(1)

求方程3x-5y=6的整数解

(2)

求方程3x-4y=25的整数解

查看答案和解析>>


同步练习册答案