若的最小值.并求相应的x.y的值. 查看更多

 

题目列表(包括答案和解析)

若x、y满足条件,求z=x+2y的最大值和最小值,并求出相应的x、y.

查看答案和解析>>

为了测定某型号采煤机截齿刀片的磨损速度,技术工人经过一定的时间x(如每隔一天),测量一次刀片的厚度y(单位:mm),得到一组实测数据如下:

(1)画出散点图,并根据散点图描述刀片厚度与天数之间的关系;

(2)若x和y具有线性相关关系,用最小二乘法求回归直线方程=bx+a,并预测第10天的刀片厚度;

(3)某煤矿开采场用0.81万元购买一批采煤机截齿刀片全部用于采煤,使用中维修费用逐天上升,第n天维修的费用为0.02n万元,每天其他的费用为0.09万元.若报废损失指购买刀片费、维修费及其他费用之和的日平均值,则这批采煤机截齿刀片应在多少天后报废最合算(即使用多少天的平均费用最少)?

查看答案和解析>>

精英家教网在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围.

查看答案和解析>>

在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:
(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围.

查看答案和解析>>

(2012•泉州模拟)(1)选修4-2:矩阵与变换
若二阶矩阵M满足M
12
34
=
710
46

(Ⅰ)求二阶矩阵M;
(Ⅱ)把矩阵M所对应的变换作用在曲线3x2+8xy+6y2=1上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系xOy中,曲线C的参数方程为
x=2tcosθ
y=2sinθ
(t为非零常数,θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且
OA
OB
=10
(其中O为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-2|+|x-4|的最小值为m,实数a,b,c,n,p,q满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求证:
n4
a2
+
p4
b2
+
q4
c2
≥2

查看答案和解析>>

 1.     2.必要补充分    3.     4.   5. 38    6.①④      7.      8.16 

9.     10 ②   11.-3   12.  13. 13    14.

15 解:(1)将

 

(2)由(1)及

 

16.证明;(1)

 

(2)存在点N为线段AB上靠近点A的四等分点         

 

17.解:(1)∵面C的圆心在第二象限,且与直线y=x相切与坐标原点O,

故可设圆心为(-m,m)(m>0)

∴圆C的半径为

令x=0,得 y=0,或y=2m

∵圆C在y轴上截得的弦长为4.

(2)由条件可知

又O,Q在圆C上,所以O,Q关于直线CF 对称;

直线CF的方程为

故Q点坐标为

 

18.解:设公司裁员人数为x,获得的经济效益为y元,

则由题意得当

  ①

 

  ②

 

 由①得对称轴

由②得对称轴

即当公司应裁员数为,即原有人数的时,获得的经济效益最大。

 

19.解:(1)

一般地,

-=2

即数列{}是以,公差为2的等差数列。

即数列{}是首项为,公比为的等比数列

 

(2)

(3)

注意到对任意自然数

要对任意自然数及正数,都有

此时,对任意自然数

20解:(1­)

方程无解

 

 

②   

 

 

 

 

   

由②

同上可得方程上至少有一解。

综上得所求的取值范围为

 

∴所证结论成立

单调递增

单调递增

所证结论成立

 

 

2009届江苏省百校高三样本分析考试

数学附加题参考答案

 1.(A)解:(1)取BD的中点O,连结OE,则 OE为△BDE的外接圆半径,

∵BE平分∠ABC,∴∠CBE=∠OBE,又    ∵OB=OE,∴∠OBE=∠BEO

∴∠CBE=∠BEO,∴BC∥OE. …………………………………3分

∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圆的切线……5分

(2)设⊙O的半径为r,则在△AOE中,

OA2=OE2+AE2,即,……7分

∴AO=2OB , 由(1)得OE∥BC,

,

∴EC=3    ………………………………………………………………………………10分

 

 

 

1.(B)解:(1)设A的一个特征值为,由题意知:

 ……………………3分

 …5分

(2)  ………………………………………7分

……10分

1.(C)解:由题设知,圆心  ………………………………………………2分

∠CPO=60°,故过P点的切线飞倾斜角为30°    ……………………………………4分

,是过P点的圆C的切线上的任一点,则在△PMO中,

∠MOP=

由正弦定理得 ……………7分

,即为所求切线的极坐标方程。……10分

1.(D)解:由柯西不等式

当且仅当 时取等号 …………………………………………8分

  …………………………………………………………10分

2.解:以O为原点,分别以OBOC OA为x轴、y轴、z轴,建立空间直角坐标O-xyz

(如图),则A(0,0,2), B(2,0,0), C(0,2,0), E(0.1.0)…………2分

 

……………………………4分

 

 

∵异面直线BE与AC所成的角是锐角

故其余弦值是  …………………………………………………………………………5分

(2)

   ………………………………………………………………7分

而平面AEC的一个法向量为

 ………………………………………………9分

由于二面角A-BE-C为钝角,故其余弦值是   ……………………………………10分

3.解:(1)分别记甲、乙、丙三个同学复检合格为事件A1、A2、A3,E表示事件“恰有一人通过笔试。

                                   ……………………………………………………5分

(2)(法一)因为甲、乙、丙三个同学通过三关的概率均为     ……………………7分

所X~B(3,0,3)      ……………………………………………………………………8分

         ……………………………………………………10分

(法二)分别记甲、乙、丙三个同学经过两次考试后合格为事件A、B、C,

………………………………………………………………7分

   ……………………………………………8分

   …………………………9分

于是,     …………………………10分

 


同步练习册答案