已知函数..如果函数没有极值点.且存在零点.(1)求的值,(2)判断方程根的个数并说明理由,(3)设点是函数图象上的两点.平行于AB 的切线以为切点.求证:. 解:(1)依题意. 无极值.存在零点 . .................(5分) (2) 设 由得 又 方程有两个根. .................(10分) (3)由已知:.所以, = 设得: .构造函数 当时..所以函数在当时是增函数 所以时..所以得成立 同理可得成立.所以 .................(16分) 查看更多

 

题目列表(包括答案和解析)

(本小题满分16分)已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)(1)求的解析式;(2)设,求证:当时,;(3)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。

查看答案和解析>>

(本小题满分16分)

是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质

(1)设函数,其中为实数。

(i)求证:函数具有性质; (ii)求函数的单调区间。

(2)已知函数具有性质。给定为实数,

,且

若||<||,求的取值范围。

查看答案和解析>>

(本小题满分16分)已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)(1)求的解析式;(2)设,求证:当时,;(3)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。

查看答案和解析>>

(本题16分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。

(1)如果函数上是减函数,在上是增函数,求的值。

(2)设常数,求函数的最大值和最小值;

(3)当是正整数时,研究函数的单调性,并说明理由

查看答案和解析>>

(本题16分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。

(1)如果函数上是减函数,在上是增函数,求的值。

(2)设常数,求函数的最大值和最小值;

(3)当是正整数时,研究函数的单调性,并说明理由  

查看答案和解析>>


同步练习册答案