抛物线的焦点重合.且椭圆与抛物 查看更多

 

题目列表(包括答案和解析)

椭圆中心在原点,且经过定点(2,-3),其一个焦点与抛物线y2=8x的焦点重合,则该椭圆的方程为
x2
16
+
y2
12
=1
x2
16
+
y2
12
=1

查看答案和解析>>

椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,过F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点.当直线l与x轴垂直时,
|CD|
|AB|
=2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)求过点O,F1,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求
F2A
F2B
的最值.

查看答案和解析>>

椭圆中心在原点,且经过定点,其一个焦点与抛物线的焦点重合,则该椭圆的方程为          

 

 

查看答案和解析>>

抛物线的焦点与椭圆的一个焦点重合,且抛物线与椭圆的一个交点为,(1)求抛物线与椭圆的方程,(2)若过点的直线与抛物线交于点,求的最小值

 

查看答案和解析>>

椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知的值.
(3)直线交椭圆于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足(O为原点),若点S满足,判定点S是否在椭圆上,并说明理由.

查看答案和解析>>

一、选择题(4′×10=40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空题(4′×4=16分)

11.       12.          13.       14.

三、解答题(共44分)

15.①解:原不等式可化为:  ………………………2′

www.ks5u.com   作根轴图:

 

 

 

                                                     ………………………4′

   可得原不等式的解集为:  ………………………6′

②解:直线的斜率  ………………………2′

∵直线与该直线垂直

              ………………………4′

的方程为: ………………………5′

为所求………………………6′

16.解:∵  ∴………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

当且仅当:………………………6′

       时,………………………7′

17.解:将代入中变形整理得:

………………………2′

首先………………………3′

   

由题意得:

解得:(舍去)………………………5′

由弦长公式得:………………………7′

18.解①设双曲线的实半轴,虚半轴分别为

由题得:   ∴………………………1′

于是可设双曲线方程为:………………………2′

将点代入可得:

∴该双曲线的方程为:………………………4′

②直线方程可化为:

则它所过定点代入双曲线方程:得:

………………………6′

又由

…………7′

……………………8′

19.解:①设中心关于的对称点为

解得:

,又点在左准线上,

的方程为:……………………4′

②设

成等差数列,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

……………………9′

∴椭圆的方程为:

 

 

 


同步练习册答案