[Ⅰ] 实验室内有一电压表mV.量程为150mV.内阻约为150.现要将其改装成量程为10mA的电流表.为此.实验室提供如下器材:干电池E.电阻箱R.滑动变阻器R`.电流表A(有1.5mA,15mA与150mA三个量程)及开关S. (1)对电压表改装时必须知道电压表的内阻.可用图示的电路测量电压表mV的内阻.在既不损坏仪器又能符合精确度尽可能高的条件下.电路中的电流表应选用的量程是 .若合上S.调节滑动变阻器后测得电压表的读数为150mV.电流表A的读数为1.05mA.则电压表的内阻RmV为 .要将其改装成量程为10mA的电流表.应并联的电阻值为 (2)在对改装成的电流表进行校对时.把A作为标准电流表.电流表A应选用的量程是 . [Ⅱ]在验证机械守恒定律的实验中.在光滑水平的桌子边缘.放一条铁链.轻轻扰动铁链.使它下滑.在铁链下滑过程中.桌子边缘P点的传感器接收到压力信号.并将其输入计算机.经过处理后画出相应的图像.图(a)为该装置示意图.图(b)为所接收的信号随铁链下落长度变化的图线. ①由图象可以得出:铁链的长度为 m.总质量为 kg ②若转化传感器的处理模式.记录铁链下落加速度随下落长度的变化图象.如图(C)所示.由图可知当铁链的Q点(图a)恰好滑离桌边时.铁链的速度为V1= m/s.如果机械能守恒.那么理论上Q点的纵坐标的值应为 .速度应为V2= m/s.比较V1.V2的大小.从而判断机械能守恒. 查看更多

 

题目列表(包括答案和解析)

设三组实验数据(x1,y1),(x2,y2),(x3,y3)的回归直线方程是:
y
=
b
x+
a
,使代数式[y1-(
b
x1+
a
)]2+[y2-(
b
x2+
a
)]2+[y3-(
b
x3+
a
)]2的值最小时,
b
=
x1y1+x2y2+x3y3-3
.
x
.
y
x12+x22-3
.
x
2
a
=
.
y
-
b
x,
.
x
.
y
分别是这三组数据的横、纵坐标的平均数).若有六组数据列表如下:
x 2 3 4 5 6 7
y 4 6 5 6.2 8 7.1
(1)求上表中前三组数据的回归直线方程;
(2)若|yi-(
b
xi+
a
)|≤0.2,即称(xi,yi)为(1)中回归直线的拟和“好点”,求后三组数据中拟和“好点”的概率.

查看答案和解析>>

某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表(总分:150分):
甲班
成绩 2a=6,
c
a
=
6
3
a=3,c=
6
x2
9
+
y2
3
=1
x2
9
+
y2
3
=1
y=kx-2
得,(1+3k2)x2-12kx+3=0
△=144k2-12(1+3k2)>0,
频数 4 20 15 10 1
乙班
成绩 k2
1
9
A(x1,y1),B(x2,y2 x1+x2=
12k
1+3k2
x1x2=
3
1+3k2
y1+y2=k(x1+x2)-4=k•
12k
1+3k2-4
=-
4
1+3k2
E(
6k
1+3k2
,-
2
1+3k2
)
频数 1 11 23 13 2
(1)现从甲班成绩位于90到100内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果;
(2)根据所给数据可估计在这次测试中,甲班的平均分是101.8,请你估计乙班的平均分,并计算两班平均分相差几分;
(3)完成下面2×2列联表,你认为在犯错误的概率不超过0.025的前提下,“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由.
成绩小于100分 成绩不小于100分 合计
甲班
-
2
1+3k2
-1
6k
1+3k2
•k=-1
26 50
乙班 12 k=±1 50
合计 36 64 100
附:
x-y-2=0或x+y+2=0. 0.15 0.10 0.05 0.025 0.010 0.005 0.001
a=
1
2
2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.
(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;
(Ⅱ)求这三人该课程考核都合格的概率(结果保留三位小数).

查看答案和解析>>

某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:

(1)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
成绩小于100分 成绩不小于100分 合计
甲班 a=
12
12
b=
38
38
50
乙班 c=24 d=26 50
合计 e=
36
36
f=
64
64
100
(2)根据所给数据可估计在这次测试中,甲班的平均分是105.8,请你估计乙班的平均分,并计算两班平均分相差几分?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.204 6.635 7.879 10.828

查看答案和解析>>

设三组实验数据(x1,y1).(x2,y2).(x3,y3)的回归直线方程是:y=bx+a,使代数式[y1-(bx1+a)]2+[y2-(bx2+a)]2+[y3-(bx3+a)]2的值最小时,a=
.
y
-b
.
x
b=
x1y1+x2y2+x3y3-3
.
x
.
y
x12+x22+x32-3
.
x
2
,(
.
x
.
y
分别是这三组数据的横、纵坐标的平均数)
若有七组数据列表如图:
x 2 3 4 5 6 7 8
y 4 6 5 6.2 8 7.1 8.6
(Ⅰ)求上表中前三组数据的回归直线方程;
(Ⅱ)若|yi-(bxi+a)|≤0.2,即称(xi,yi)为(Ⅰ)中回归直线的拟和“好点”,求后四组数据中拟和“好点”的概率.

查看答案和解析>>


同步练习册答案