解:(Ⅰ)取.得.取. 查看更多

 

题目列表(包括答案和解析)

(2013•烟台二模)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 5
女生 10
合计 50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
3
5

(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

(2007•嘉定区一模)已知函数f(x)=
|x+m-1|x-2
,m>0且f(1)=-1.
(1)求实数m的值;
(2)判断函数y=f(x)在区间(-∞,m-1]上的单调性,并用函数单调性的定义证明;
(3)求实数k的取值范围,使得关于x的方程f(x)=kx分别为:
①有且仅有一个实数解;
②有两个不同的实数解;
③有三个不同的实数解.

查看答案和解析>>

(2007•普陀区一模)现有问题:“对任意x>0,不等式x-a+
1
x+a
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数f(x)=
1
x+a
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数f(x)=x+a+
1
x+a
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是(  )

查看答案和解析>>

(1)解关于x的不等式:x2+(1-a)x-a<0,(a∈R);
(2)设x,y为正数且2x+5y=20,问x,y为何值时,xy取得最大值?

查看答案和解析>>


同步练习册答案