显然.只需研究过.两种情形. 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

(2005•东城区一模)通讯中常采取重复发送信号的办法来减少在接收中可能发生的错误,假定发报机只发0和1两种信号,接收时发生错误是0收为1或1收为0的概率都是0.05,为减少错误,采取每一种信号连发3次,接收时以“少数服从多数”的原则判断,则判错一个信号的概率为(  )

查看答案和解析>>

18、通讯中,发报方常采取重复发送同一信号的办法来减少在接收中可能发生的错误,.假定发报机只发0和1两种信号,接收时发生错误的情况是:“发0收到1”或“发1收到0”,它们发生的概率都是0.05.
(Ⅰ)若一个信号连续发2次,接收时“两次信号相同”,接收方接收信号;否则不接收,则接收方接收一个信号的概率是多少?
(Ⅱ)若一个信号连续发3次,按“少数服从多数”的原则接收,则正确接收一个信号的概率是多少?

查看答案和解析>>

(2004•黄埔区一模)要把两种大小不同的钢板截成A、B二种规格的材料,每张钢板可同时截得两种规格较小的钢板数如图表:

规格类型
钢板类型
A规格 B规格
第一种钢板 2 1
第二种钢板 1 2
今需A、B两种规格材料分别为12及18张.试求:这两种钢板应各取多少张,才能既满足二种规格成品的需要又能使所用钢板总数最少?

查看答案和解析>>

(2012•赣州模拟)某中学对某班50名学生学习习惯和数学学习成绩进行长期的调查,学习习惯和数学成绩都只分良好和一般两种情况,得到的统计数据(因某种原因造成数据缺省,现将缺省部分数据用x,y,z,m,n表示)如下表所示:
数学成绩良好 数学成绩一般 合计
学习习惯良好 20 x 25
学习习惯一般 y 21 z
合计 24 m n
(1)在该班任选一名学习习惯良好的学生,求其数学成绩也良好的概率.
(2)已知A是学习习惯良好但数学成绩一般的学生,B是学习习惯一般但数学成绩良好的学生,在学习习惯良好但数学成绩一般的学生和学习习惯一般但数学成绩良好的学生中,各选取一学生作代表,求A、B至少有一个被选中的概率.
(3)有多大的把握认为该班的学生的学习习惯与数学成绩有关系?说明理由.
参考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

临界值表:
p(Χ2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>


同步练习册答案