题目列表(包括答案和解析)
如图,在直角坐标系中,矩形
的顶点
与坐标原点重合,顶点
在坐标轴上,
,
.动点
从点
出发,以
的速度沿
轴匀速向点
运动,到达点
即停止.设点
运动的时间为
.
![]()
(1)过点
作对角线
的垂线,垂足为点
.求
的长
与时间
的函数关系式,并写出自变量
的取值范围;
(2)在点
运动过程中,当点
关于直线
的对称点
恰好落在对角线
上时,求此时直线
的函数解析式;
(3)探索:以
三点为顶点的
的面积能否达到矩形
面积的
?请说明理由.
如图,在直角坐标系中,矩形
的顶点
与坐标原点重合,顶点
在坐标轴上,
,
.动点
从点
出发,以
的速度沿
轴匀速向点
运动,到达点
即停止.设点
运动的时间为
.![]()
(1)过点
作对角线
的垂线,垂足为点
.求
的长
与时间
的函数关系式,并写出自变量
的取值范围;
(2)在点
运动过程中,当点
关于直线
的对称点
恰好落在对角线
上时,求此时直线
的函数解析式;
(3)探索:以
三点为顶点的
的面积能否达到矩形
面积的
?请说明理由.
如图,在直角坐标系中,矩形
的顶点
与坐标原点重合,顶点
在坐标轴上,
,
.动点
从点
出发,以
的速度沿
轴匀速向点
运动,到达点
即停止.设点
运动的时间为
.![]()
(1)过点
作对角线
的垂线,垂足为点
.求
的长
与时间
的函数关系式,并写出自变量
的取值范围;
(2)在点
运动过程中,当点
关于直线
的对称点
恰好落在对角线
上时,求此时直线
的函数解析式;
(3)探索:以
三点为顶点的
的面积能否达到矩形
面积的
?请说明理由.
![]()
如图,在直角坐标系中,矩形
的顶点
与坐标原点重合,顶点
在坐标轴上,
,
.动点
从点
出发,以
的速度沿
轴匀速向点
运动,到达点
即停止.设点
运动的时间为
.
(1)过点
作对角线
的垂线,垂足为点
.求
的长
与时间
的函数关系式,并写出自变量
的取值范围;
(2)在点
运动过程中,当点
关于直线
的对称点
恰好落在对角线
上时,求此时直线
的函数解析式;
(3)探索:以
三点为顶点的
的面积能否达到矩形
面积的
?请说明理由.
![]()
在平面直角坐标系中,已知抛物线
(
为常数)的顶点为
,等腰直角三角形
的定点
的坐标为
,
的坐标为
,直角顶点
在第四象限.
(1)如图,若该抛物线过
,
两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点
在直线
上滑动,且与
交于另一点
.
i)若点
在直线
下方,且为平移前(1)中的抛物线上的点,当以![]()
三点为顶点的三角形是等腰直角三角形时,求出所有符合条
件的点
的坐标;
ii)取
的中点
,连接
.试探究
是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
![]()
一、填空题:
1.60°.
2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;
3.1;
4.4。
5.60
.files/image745.jpg)
7.2
-2
8.15。
9.5
10.4
11.5
12. 2,3,n。
.files/image749.jpg)
14..files/image751.gif)
15. (-8,0)。
16.6。
17. .平行四边形。
18.60
19.4,12
二、选择题:
1.C
2.C
3.B
4.B
5.B
6.A
7.C。
8.B。
9.C
10.D
11.C。
12.B
13.B
14.C
15.D
16. C
17.C
18.D
19.D
20.C
21.D
22.D。
三、解答题:
1.(1)如图答2,因为AD∥BC,AB∥DC ------------------------------------------------- 2分
所以四边形ABCD为平行四边形.---------------------------------------------------------------- 3分
分别过点B、D作BF⊥AD,DE⊥AB,垂足分别为点E、F.
则BE = CF.-------------------------------------------------------------------------------------------- 4分
因为∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分
所以AD = AB.
所以四边形ABCD为菱形.-------------------------------------------------------------------------- 6分
(2)存在最小值和最大值.-------------------------------------------------------------------------- 7分
① 当∠DAB = 90°时,菱形ABCD为正方形,周长最小值为8;---------------------------8分
② 当AC为矩形纸片的对角线时,设AB = x,如图答3,在Rt△BCG中,
.files/image754.gif)
,
.所以周长最大值为17.-------------------------------------------9分
2.证明: ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′
证得:△AOE≌△COF-----------------------------------------------------------3′
证得:四边形AECF是平行四边形------------------------------------------------5′
由AC⊥EF可知:四边形AECF是菱形 -------------------------------------------6′
.files/image760.jpg)
.files/image762.jpg)
5.(本题满分8分)
解:(1)方法一:如图①
∵在□ ABCD中,AD∥BC
∴∠DAB+∠ABC=180° ………………………1分
∵AE、BF分别平分∠DAB和∠ABC
∴∠DAB=2∠BAE,∠ABC=2∠ABF ………………………2分
∴2∠BAE+2∠ABF=180°
即∠BAE+∠ABF=90° ………………………3分
∴∠AMB=90°
∴AE⊥BF.
…………………………4分
![]() |
|||
|