19.解:(1)当n=1. ξ=0.1.于是ξ的分布列为 ξ 0 1 P 1-p p ∴ Eξ=0×(1-p)+1×p=p. ∴ Dξ=2·p=p-p2= 即当时.Dξ有最大值. ------------------5分 . ----------------------6分 ∴ Eξ=np.Dξ=npq=np(1-p). ∴ np=3.. ∴.n=4. -------------------------9分 ∴ . 即 ξ的分布列为 ξ 0 1 2 3 4 P -----------------------------12分 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
a
x
+lnx-1(a是常数,e=2.71828).
(Ⅰ)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当a=1时,方程f(x)=m在x∈[
1
e
,e2]上有两解,求实数m的取值范围;
(Ⅲ)求证:ln
n
n-1
1
n
(n>1,且n∈N*).

查看答案和解析>>

已知m,n∈R,f(x)=x2-mnx.
(1)当n=1时,
①解关于x的不等式f(x)>2m2
②若关于x的不等式f(x)+4>0在x∈[1,3]上有解,求m的取值范围;
(2)若m>0,n>0,且m+n=1,证明不等式f(
1
m
)+f(
1
n
)≥7

查看答案和解析>>

(2012•闵行区一模)将边长分别为1、2、3、…、n、n+1、…(n∈N*)的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第1个、第2个、…、第n个阴影部分图形.容易知道第1个阴影部分图形的周长为8.设前n个阴影部分图形的周长的平均值为f(n),记数列{an}满足an=
f(n),当n为奇数
f(an-1) ,当n为偶数

(1)求f(n)的表达式;
(2)写出a1,a2,a3的值,并求数列{an}的通项公式;
(3)记bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范围.

查看答案和解析>>

(2012•闵行区一模)将边长分别为1、2、3、…、n、n+1、…(n∈N*)的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第1个、第2个、…、第n个阴影部分图形.设前n个阴影部分图形的面积的平均值为f(n).记数列{an}满足a1=1,an+1=
f(n),当n为奇数
f(an),当n为偶数

(1)求f(n)的表达式;
(2)写出a2,a3的值,并求数列{an}的通项公式;
(3)记bn=an+s(s∈R),若不等式
.
1       00
    bnbn+2
bn+1 bn+1bn+1
.
>0
有解,求s的取值范围.

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>


同步练习册答案