题目列表(包括答案和解析)
已知
,函数
(其中
为自然对数的底数).
(Ⅰ)求函数
在区间
上的最小值;
(Ⅱ)设数列
的通项
,
是前
项和,证明:
.
【解析】本试题主要考查导数在研究函数中的运用,求解函数给定区间的最值问题,以及能结合数列的相关知识,表示数列的前n项和,同时能构造函数证明不等式的数学思想。是一道很有挑战性的试题。
已知函数![]()
(I)若
是
的极值点,求
的极值;
(Ⅱ)若函数
是
上的单调递增函数,求实数
的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用,求解函数的机制和函数单调性的逆用问题。
已知函数
.
(1) 当
时,求函数
的单调区间和极值;
(2) 若
在
上是单调函数,求实数a的取值范围.
【解析】本试题考查了导数在研究函数中的运用。利用导数判定函数的单调性和求解函数的极值,以及运用逆向思维,求解参数取值范围的问题。
已知函数
.
(1) 当
时,求函数
的单调区间和极值;
(2) 若
在
上是单调函数,求实数a的取值范围.
【解析】本试题考查了导数在研究函数中的运用。利用导数判定函数的单调性和求解函数的极值,以及运用逆向思维,求解参数取值范围的问题。
已知函数![]()
(I)讨论函数
的单调性;
(Ⅱ)当
时,求函数
在区间
上的最值.
【解析】本试题主要是考查了导数在研究函数中的运用求解函数的最值问题,和判定函数单调性的运用。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com