题目列表(包括答案和解析)
设f(x)是定义在[a,b]上的函数,用分点T:a=x0<x1<…<x i﹣1<xi<…xn=b
将区间[a,b]任意划分成n个小区间,
如果存在一个常数M>0,使得
和
≤M(i=1,2,…,n)恒成立,
则称f(x)为[a,b]上的有界变差函数.
(1)函数f(x)=x2在[0,1]上是否为有界变差函数?请说明理由;
(2)设函数f(x)是[a,b]上的单调递减函数,证明:f(x)为[a,b]上的有界变差函数;
(3)若定义在[a,b]上的函数f(x)满足:存在常数k,使得对于任意的x1、x2∈[a,b]时,|f(x1)﹣f(x2)|≤k
|x1﹣x2|.证明:f(x)为[a,b]上的有界变差函数.
①若存在常数M,使得对任意x∈R有f(x)≤M,则M是函数f(x)的最大值;
②若存在x0∈R,使得对任意x∈R且x≠x0有f(x)<f(x0),则f(x0)是函数f(x)的最大值;
③若存在x0∈R,使得对任意x∈R,有f(x)≤f(x0),则f(x0)是函数f(x)的最大值.
这些命题中,真命题的个数是( )
A.0 B.1 C.2 D.3
设函数f(x)的定义域为R,若存在与x无关的正常数M,使
对一切实数x均成立,则称f(x)为“有界泛函”,给出以下函数:
|
其中是“有界泛函”的个数为
A.0 B.1 C.2 D.3
设函数f(x)的定义域为R,若存在常数M>0使|f(x)|≤M|x|对一切实数x均成立,
则称函数f(x)为F函数.现给出下列函数①f(x)=x2,②f(x)=
,③f(x)=x(1-2x),④f(x)是定义在实数集R上的奇函数,且对一切x1x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是F函数的序号为
A.①②③
B.②④
C.②③
D.③④
设函数
f(x)=a2x2(a>0),g(x)=blnx.(1)
将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,试写出y=φ(x)的解析式及值域;(2)
关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;(3)
对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com