如图.有一块四边形绿化区域.其中...现准备经过上一点和上一点铺设水管.且将四边形分成面积相等的两部分.设.. 查看更多

 

题目列表(包括答案和解析)

 如图,有一块四边形绿化区域,其中,现准备经过上一点上一点铺设水管,且将四边形分成面积相等的两部分,设

①求的关系式;②求水管的长的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

精英家教网如图,有一块四边形BCED绿化区域,其中∠C=∠D=90°,BC=BD=
3
,CE=DE=1,现准备经过DB上一点P和EC上一点Q铺设水管PQ,且PQ将四边形BCED分成面积相等的两部分,设DP=x,EQ=y.
(1)求x,y的关系式;  (2)求水管PQ的长的最小值.

查看答案和解析>>

如图,有一块四边形BCED绿化区域,其中∠C=∠D=90°,,CE=DE=1,现准备经过DB上一点P和EC上一点Q铺设水管PQ,且PQ将四边形BCED分成面积相等的两部分,设DP=x,EQ=y.
(1)求x,y的关系式;  (2)求水管PQ的长的最小值.

查看答案和解析>>

某小区有一块三角形空地,如图△ABC,其中AC=180米,BC=90米,∠C=90°,开发商计划在这片空地上进行绿化和修建运动场所,在△ABC内的P点处有一服务站(其大小可忽略不计),开发商打算在AC边上选一点D,然后过点P和点D画一分界线与边AB相交于点E,在△ADE区域内绿化,在四边形BCDE区域内修建运动场所.现已知点P处的服务站与AC距离为10米,与BC距离为100米.设DC=d米,试问d取何值时,运动场所面积最大?

查看答案和解析>>

如图,有一块四边形BCED的绿化区域,其中∠C=∠D=90°,BC=BD=,CE=DE=1.现准备经过DB上的一点P和EC上的一点Q铺设水管PQ,且PQ将四边形BCED分成面积相等的两部分.设DP=x,EQ=y,
(1)求x,y的关系式;
(2)水管PQ至少辅设多长?

查看答案和解析>>

1.解:依题设有:     ………………………………………4分

 令,则           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1),由

所以

为圆的直角坐标方程.  ……………………………………3分

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

3.(必做题)(本小题满分10分)

解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的, 则其概率为                …………………………………………4分

    答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为

(2)随机变量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴随机变量的分布列为

 

2

3

4

P

                    …………………………10分

4.(必做题)(本小题满分10分)

(1) 

              ……………………………………3分

(2)平面BDD1的一个法向量为

设平面BFC1的法向量为

得平面BFC1的一个法向量

  ∴所求的余弦值为    ……6分

(3)设

,由

    

时,

时,∴   ……………………………………10分


同步练习册答案