又BGÌ平面BAE.CFË平面BAE.所以CF∥平面BAE. -----------14分解法二:延长DC与AB交于G点.连接EG.因为在△ABC中.AB=BC=AC.所以∠CAB=60°,所以∠CAB=∠ACD.即AC为∠DAG的平分线.-------------9分又AC⊥CD.所以AG=AD.C为DG中点.又F为ED的中点.所以CF∥EG.------------------ 12分根据EGÌ平面BAE.CFË平面BAE.所以CF∥平面BAE.-----------14分 查看更多

 

题目列表(包括答案和解析)

(2008•南京模拟)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中点,F为ED的中点.
(1)求证:平面PAC⊥平面PCD;
(2)求证:CF∥平面BAE.

查看答案和解析>>

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中点,F为ED的中点.
(1)求证:平面PAC⊥平面PCD;
(2)求证:CF∥平面BAE.

查看答案和解析>>

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中点,F为ED的中点.
(1)求证:平面PAC⊥平面PCD;
(2)求证:CF∥平面BAE.

查看答案和解析>>

如图所示,正方形ABC1C2,点E、F分别是C1C2和AB的中点,沿AE、BE向上翻折,使C1、C2重合为C,形成一个三棱锥C-ABE,则(  )

查看答案和解析>>


同步练习册答案