(1)试求函数的最大值和最小值, 查看更多

 

题目列表(包括答案和解析)

把函数的图象按向量平移得到函数的图象. 

(1)求函数的解析式; (2)若,证明:.

【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 ,便可以得到结论。第二问中,令,然后求导,利用最小值大于零得到。

(1)解:设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 证明:令,……6分

……8分

,∴,∴上单调递增.……10分

,即

 

查看答案和解析>>

设函数f(x)=5sin(
k
5
x-
π
3
)(k≠0)

(1)写出f(x)的最大值M,最小值m,最小正周期T;
(2)试求最小正整数k,使得当自变量x在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是M和一个值是m.

查看答案和解析>>

设函数f(θ)=
3
sinθ+cosθ
,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(Ⅰ)若点P的坐标为(
1
2
3
2
)
,求f(θ)的值;
(Ⅱ)若点P(x,y)为平面区域Ω:
x+y≥1
x≤1
y≤1
上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

设函数f(α)=sinα+
3
cosα,其中,角α的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤α≤π.
(1)若P点的坐标为(
3
,1),求f(α)的值;
(2)若点P(x,y)为平面区域
x+y≥1
y≥x
y≤1
上的一个动点,试确定角α的取值范围,并求函数f(α)的最小值和最大值.

查看答案和解析>>

设函数fn( θ )=sinnθ+( -1 )ncosnθ,0≤θ≤
π
4
,其中n为正整数.
(Ⅰ)判断函数f1(θ)、f3(θ)的单调性,并就f1(θ)的情形证明你的结论;
(Ⅱ)证明:2f6(θ)-f4(θ)=(cos4θ-sin4θ)(cos2θ-sin2θ);
(Ⅲ)试给出求函数fn(θ)的最大值和最小值及取得最值时θ的取值的一般规律(不要求给出证明).
fn(θ) fn(θ)的
单调性
fn(θ)的最小值及取得最小值时θ的取值 fn(θ)的最大值及取得最大值时θ的取值
n=1
n=2
n=3
n=4
n=5
n=6

查看答案和解析>>


同步练习册答案