已知空间三点O.B.若直线OA上的一点H满足BHOA.则点H的坐标为 . 查看更多

 

题目列表(包括答案和解析)

已知下列命题:
①若A、B、C、D是空间任意四点,则有
AB
+
BC
+
CD
+
DA
=
0

②|
a
+
b
|=
|a|
+
|b|
a
b
共线的充要条件;
③若
a
b
c
是空间三向量,则|
a
-
b
|≤|
a
-
c
|+|
c
-
b
|;
④对空间任意点O与不共线的三点A、B、C,若
0P
=x
OA
+y
OB
+z
OC
(其中x、y、z∈R),则P、A、B、C四点共面.
其中不正确的命题的序号是______.

查看答案和解析>>

如图,空间直角坐标系O-xyz中,已知A(1,0,0),B(0,2,0),现将△AOB按向量平移到△A'O'B'.
(Ⅰ)写出三点A'、O'、B'的坐标;
(Ⅱ)求证:AB'⊥BO';
(Ⅲ)求二面角A-BB'-O的大小.

查看答案和解析>>

(2009•成都二模)已知空间向量
OA
=(1,K,0)(k∈Z)
|
OA
| ≤3
OB
=(3,1,0)
,O为坐标原点,给出以下结论:①以OA、OB为邻边的平行四边形OACB中,当且仅当k=2时,|
OC
|
取得最小值;②当k=2时,到A和点B等距离的动点P(x,y,z)的轨迹方程为4x-2y-5=0,其轨迹是一条直线;③若
OP
=(0,0,1)
,则三棱锥O-ABP体积的最大值为
7
6
;④若
OP
=(0,0,1),则三棱锥O-ABP各个面都为直角三角形的概率为
2
5
.其中,所有正确结论的应是

查看答案和解析>>

已知空间三点O(0,0,0),A(-1,1,0),B(0,1,1),若直线OA上的一点H满足BH⊥OA,则点H的坐标为
 

查看答案和解析>>

已知空间三点O(0,0,0),A(-1,1,0),B(0,1,1),若直线OA上的一点H满足BH⊥OA,则点H的坐标为______.

查看答案和解析>>

 

一、选择题(本大题共12小题,每小题4分,共48分)

1.C   2.A   3.D   4.D   5.D   6.B   7.C   8.D   9.C   10.A   11C.   12.C

二、填空题(本大题共4小题,每小题4分,共16分)

13.x∈R,x≤0    14.-15    15.-1    16.

三、解答题(本大题共3小题,每小题12分,共36分)

17.(本小题满分12分)

  解:(Ⅰ)由已知c=1,则a2-b2=1.

           又3a2=4b 2

故a2=4,b2=3.

           所求椭圆方程为.……………………………………………6分

(Ⅱ)由

           解得

           又

    于是 ……………………………………12分

18.(本小题满分12分)

    解:(Ⅰ)因为双曲线的焦点在y轴上,设所求双曲线的方程为

                  由题意,得解得a=2,b=1.

         所求双曲线的方程为…………………………………………6分

       (Ⅱ)由(Ⅰ)可求得F1(0,-),F2(0,).

点F1,F2关于直线y=x的对称点分别为F1′(-,0),F2′(,0),又P(0,2),设椭圆方程为(m>n>0).

          由椭圆定义,得2m=

因为m2-n2=5,所以n2=4.

所以椭圆的方程为.………………………………………12分

19.(本小题满分12分)

    证明:如图,建立空间直角坐标系A-xyz,设AB=2a,BC=2b,PA=2c

则A(0,0,0),B(2a,0,0),C(2a,2b,0),D(0,2b,0),P(0,0,2c).

∵E为AB的中点,F为PC的中点,

∴E(a,0,0),F(a,b,c).

(Ⅰ)∵=(0,b,c),=(0,0,2c),

=(0,2b,0),

).

共面.

又∴平面PAD,

∴EF∥平面PAD.……………………4分

(Ⅱ)∵=(-2a,0,0),

?=(-2 a,0,0)?(0,b,c)=0.

∴EFCD.…………………………………………………………8分

(Ⅲ)若∠PDA=45°则有2b=2c,即b=c.

=(0,b,b),=(0,0,2b).

>=

∴<>=45°.

∵AP平面ABCD,

是平面ABCD的法向量.

∴EF与平面ABCD所成的角为90°-<>=45°.……12分

 

 

 


同步练习册答案