(4)如图4.点是的边的黄金分割点.过点作.交于点.显然直线是的黄金分割线.请你画一条的黄金分割线.使它不经过各边黄金分割点. 查看更多

 

题目列表(包括答案和解析)

黄金分割比是生活中比较多见的一种长度比值,它能给人许多美感和科学性,我们初中阶段学过的许多几何图形也有着类似的边长比例关系.例如我们熟悉的顶角是36°的等腰三角形,其底与腰之比就为黄金分割比
5
-1
2
,底角平分线与腰的交点为黄金分割点.
(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你证明点D是腰AB的黄金分割点;
(2)如图2,在△ABC中,AB=AC,若
AB
BC
=
5
-1
2
,则请你求出∠A的度数;
(3)如图3,如果在Rt△ABC中,∠ACB=90°,CD为AB上的高,∠A、∠B、∠ACB的对边分别为a,b,c.若点D是AB的黄金分割点,那么该直角三角形的三边a,b,c之间是什么数量关系?并证明你的结论.
精英家教网

查看答案和解析>>

如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=
1
2
AB,OD=2.
(1)求∠CDB的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比
5
-1
2

①写出图中所有的黄金三角形,选一个说明理由;
②求弦CE的长;
③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点精英家教网P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.

查看答案和解析>>

如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=数学公式AB,OD=2.
(1)求∠CDB的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比数学公式
①写出图中所有的黄金三角形,选一个说明理由;
②求弦CE的长;
③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.

查看答案和解析>>

如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=AB,OD=2 。
(1)求∠CDB的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形。它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比
①写出图中所有的黄金三角形,选一个说明理由;
②求弦CE的长;
③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由

查看答案和解析>>

如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=AB,OD=2。
(1)求∠CDB的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比
①求弦CE的长;
②在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由。

查看答案和解析>>


同步练习册答案