一条直线过点(5.2).且在x轴.y轴上截距相等.则这直线方程为 A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)(文科做)已知点P是曲线C上一个动点,点Q是直线x+2y+5=0上一个动点,求|PQ|的最小值.
(理科做)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

(2012•湖南)在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

4月份(共30天),有一新款服装投放某专卖店销售,日销售量(单位为件)f(x)关于时间n(1≤v≤30,nN*)的函数关系如图所示,其中函数f(n)的图象中的点位于斜率为5和-3的两条直线上,两直线的交点的横坐标为m,且第m天日销售量最大.

1)求f(n)的表达式,及前m天的销售总数;

2)按规律,当该专卖店销售总数超过400件时,社会上流行该服装,而日销售量连续下降并低于30件时,该服装的流行会消失,试问该服装在社会上流行的天数是否会超过10天?并说明理由.

查看答案和解析>>

4月份(共30天),有一新款服装投放某专卖店销售,日销售量(单位为件)f(x)关于时间n(1≤v≤30,nN*)的函数关系如图所示,其中函数f(n)的图象中的点位于斜率为5和-3的两条直线上,两直线的交点的横坐标为m,且第m天日销售量最大.

1)求f(n)的表达式,及前m天的销售总数;

2)按规律,当该专卖店销售总数超过400件时,社会上流行该服装,而日销售量连续下降并低于30件时,该服装的流行会消失,试问该服装在社会上流行的天数是否会超过10天?并说明理由.

查看答案和解析>>

己知椭圆的焦点在x轴上,它的一个焦点与抛物线x2=4y的焦点之间的距离为
5
,离心率e=
2
5
5
,过椭圆的左焦点厂做一条与坐标轴不垂直的直线L交椭圆于A,B两点.
(1)求椭圆的标准方程;
(2)设点M(m,0)是线段OF1上的一个动点,且(
MA
+
MB
)⊥
AB
,求m的取值范围.

查看答案和解析>>


同步练习册答案