由 于是总有.故选(A) 查看更多

 

题目列表(包括答案和解析)

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

设函数y=f(x)由方程x|x|+y|y|=1确定,下列结论正确的是
 
(请将你认为正确的序号都填上)
(1)f(x)是R上的单调递减函数;
(2)对于任意x∈R,f(x)+x>0恒成立;
(3)对于任意a∈R,关于x的方程f(x)=a都有解;
(4)f(x)存在反函数f-1(x),且对于任意x∈R,总有f(x)=f-1(x)成立.

查看答案和解析>>

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有-a∉A,则称集合A具有性质P.
(Ⅰ)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(Ⅱ)对任何具有性质P的集合A,证明:n≤
k(k-1)2

(Ⅲ)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

数列{an}中an>0,且由下列条件确定:a1=m>0,an+1=
1
2
(an+
m
an
),n∈N*

(1)证明:对n≥2,总有an
m

(2)证明:对n≥2,总有an≥an+1

查看答案和解析>>


同步练习册答案