0  117624  117632  117638  117642  117648  117650  117654  117660  117662  117668  117674  117678  117680  117684  117690  117692  117698  117702  117704  117708  117710  117714  117716  117718  117719  117720  117722  117723  117724  117726  117728  117732  117734  117738  117740  117744  117750  117752  117758  117762  117764  117768  117774  117780  117782  117788  117792  117794  117800  117804  117810  117818  447090 

8.如图8甲所示,一边长为L=2.5 m、质量m=0.5 kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度为B=0.8 T的有界匀强磁场中,它的一边与磁场的边界MN重合.在水平向左的力F作用下由静止开始向左运动,经过5 s线框被拉出磁场.测得金属线框中的电流随时间变化的图象如图乙所示,在金属线框被拉出的过程中:

图8

(1)求通过线框导线截面的电量及线框的电阻;

(2)写出水平力F随时间变化的表达式;

(3)已知在这5 s内力F做功为1.92 J,那么在此过程中,线框产生的焦耳热是多少?

[解析] (1)由It图象的面积可得:q=×5×0.5 C=1.25 C

则由q=得R=4 Ω.

(2)线框中的电流I

则==a

It图象的斜率可得:==0.1

a=0.2 m/s2

FFAma

所以Fmaat

F=0.2t+0.1(N).

(3)vat=0.2×5 m/s=1 m/s

根据动能定理:WFQmv2

所以Q=1.67 J.

[答案] (1)4 Ω (2)F=0.2t+0.1 (N)

(3)1.67 J

试题详情

7.(2014·福建三明市联考)如图7甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d=0.5 m,导轨右端连接一阻值为R=4 Ω的小灯泡L.在CDEF矩形区域内有竖直向上的匀强磁场,磁感应强度B随时间t变化如图乙所示,CF长为2 m.在t=0时刻,电阻为r=1 Ω的金属棒ab在水平恒力F=0.2 N作用下,由静止开始沿导轨向右运动,t=4 s时进入磁场,并恰好能够匀速运动.求:

图7

(1)0~4 s内通过小灯泡的电流强度;

(2)金属棒在磁场中匀速运动的速度;

(3)金属棒的质量.

[解析] (1)金属棒未进入磁场,电路总电阻RRLRab=5 Ω

回路中感应电动势为:E1===0.5 V

灯泡中的电流强度为:I==0.1 A.

(2)因金属棒在磁场中匀速运动,则

FBId

又:I′=E/(Rr),EBdv

解得:v=1 m/s.

(3)金属棒未进入磁场的加速度为:a==0.25 m/s2

金属棒的质量:m==0.8 kg.

[答案] (1)0.1 A (2)1 m/s (3)0.8 kg

试题详情

6.

图6

(多选)矩形线圈abcd,长ab=20 cm,宽bc=10 cm,匝数n=200,线圈回路总电阻R=5 Ω.整个线圈平面内均有垂直于线圈平面的匀强磁场穿过.若匀强磁场的磁感应强度B随时间t的变化规律如图6所示,则( )

A.线圈回路中感应电动势随时间均匀变化

B.线圈回路中产生的感应电流为0.4 A

C.当t=0.3 s时,线圈的ab边所受的安培力大小为0.016 N

D.在1 min内线圈回路产生的焦耳热为48 J

[解析] 由EnnS可知,由于线圈中磁感应强度的变化率= T/s=0.5 T/s为常数,则回路中感应电动势为En=2 V,且恒定不变,故选项A错误;回路中感应电流的大小为I==0.4 A,选项B正确;当t=0.3 s时,磁感应强度B=0.2 T,则安培力为FnBIl=200×0.2×0.4×0.2 N=3.2N,故选项C错误;1 min内线圈回路产生的焦耳热为QI2Rt=0.42×5×60 J=48 J.选项D正确.

[答案] BD

试题详情

5.

图5

(多选)如图5所示,L1、L2、L3是完全相同的灯泡,L为直流电阻可忽略的自感线圈,电源内阻不计,开关S原来接通.现将开关S断开,则( )

A.L1点亮,L2变暗,最终两灯一样亮

B.L2闪亮一下后恢复到原来的亮度

C.L3变暗一下后恢复到原来的亮度

D.L3闪亮一下后恢复到原来的亮度

[解析] 当S闭合时,L把灯L1短路,L1不亮,IL3IL2=;将S断开时,L1与L2串联,电流变小,L2变暗,L1被点亮,最终两灯一样亮.由于L中的电流要减小,且与L3串联,IL3=,因此L3要闪亮一下后再恢复到原来的亮度.因此正确选项为A、D两项.

[答案] AD

试题详情

4.如图4所示的两个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,距磁场区域的左侧L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直.现用拉力F使线框以速度v匀速穿过磁场区域,以初始位置为计时起点.规定电流沿逆时针方向时电动势E为正,拉力F向右为正.则以下关于线框中通过的电荷量q、感应电动势E、拉力F和产生的热量Q随时间t变化的图象正确的是( )

图4

[解析] 此类问题可划分为几个不同的运动过程:0~L过程,线框在磁场外,E=0,F=0,q=0,Q=0;L~2L过程,线框在磁场中匀速运动,E1BLvE1恒定,方向沿逆时针方向,感应电流大小恒定,QI2Rt1Q不恒定,选项D错;2L~3L过程,线框位于两个磁场中,两侧产生感应电动势方向相同,沿顺时针方向,E2Bv·2L=2BLv=2E1,通过线框的电荷量q2=2q1,拉力F2=2B·LL==4F1,且方向仍向右,选项A、C错;由分析知选项B正确.

[答案] B

试题详情

3.

图3

如图3所示的金属圆环放在有界匀强磁场中,将它从磁场中匀速拉出来,下列说法正确的是( )

A.向左拉出和向右拉出过程中,其感应电流方向相反

B.不管从什么方向拉出,环中的感应电流方向总是逆时针的

C.不管从什么方向拉出,环中的磁通量的变化量都相同

D.在匀速拉出过程中,感应电流大小不变

[解析] 无论是向左拉出还是向右拉出磁场区域,圆环中的磁通量都减少,由楞次定律可判出环中的感应电流方向应是顺时针的,C项正确,A、B项错误;由EBlv知,圆环被拉出时,切割的有效长度在变化,因此,E发生变化,感应电流大小发生变化,D项错误.

[答案] C

试题详情

2.

图2

如图2所示,正方形线abcd位于纸面内,边长为L,匝数为N,线圈内接有电阻值为R的电阻,过ab中点和cd中点的连线OO′恰好位于垂直纸面向里的匀强磁场的右边界上,磁场的磁感应强度为B.当线圈转过90°时,通过电阻R的电荷量为( )

A.    B.

C.  D.

[解析] 初状态时,通过线圈的磁通量为Φ1=,当线圈转过90°时,通过线圈的磁通量为0,由qN可得通过电阻R的电荷量为.

[答案] B

试题详情

1.

图1

(2011·上海高考)如图1,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当aO点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a( )

A.顺时针加速旋转

B.顺时针减速旋转

C.逆时针加速旋转

D.逆时针减速旋转

[解析] 由楞次定律知,欲使b中产生顺时针电流,则a环内磁场应向里减弱或向外增强,a环的旋转情况应该是顺时针减速或逆时针加速,由于b环又有收缩趋势,说明a环外部磁场向外,内部向里,故选B.

[答案] B

试题详情

2.

图9-4

如图9-4,MNPQ两条平行的光滑金属轨道与水平面成θ=30°角固定,轨距为L=1 m、质量为m的金属杆ab水平放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.PM间接有阻值R1的定值电阻,QN间接变阻箱R0,现从静止释放ab,改变变阻箱的阻值R,测得最大速度为v m,得到与的关系图线如图9-5所示.若轨道足够长且电阻不计,重力加速度g取10 m/s2.求

图9-5

(1)金属杆的质量m和定值电阻的阻值R1

(2)当变阻箱R取4 Ω时,且金属杆ab运动的加速度为gsinθ时,此时金属杆ab运动的速度;

(3)当变阻箱R取4 Ω时,且金属杆ab运动的速度为时,定值电阻R1消耗的电功率.

[解析] (1)总电阻为RR1R/(R1R),IBLv/R

当达到最大速度时金属棒受力平衡,mgsin θBIL=(R1R),

=+,

根据图象代入数据,可以得到棒的质量m=0.1 kg,R=1 Ω.

(2)金属杆ab运动的加速度为gsin θ时,I′=BLv′/R

根据牛顿第二定律Fma

mgsin θBILma[来源:&&]

mgsin θ=(R1R)=mgsin θ

代入数据,得到v′=0.8 m/s.

(3)当变阻箱R取4 Ω时,根据图象得到vm=1.6 m/s,

P===0.16 W.

[答案] (1)0.1 kg 1 Ω (2)0.8 m/s (3)0.16 W

巧选排除法,妙解图象题

 (2011·海南高考)如图9-6所示,EOFEOF′为空间一匀强磁场的边界,其中EOEO′,FOFO′,且EOOFOO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿OO方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是( )

图9-6

[技法攻略] 本题中四个选项都是it关系图线,故可用排除法.因在第一个阶段内通过导线框的磁通量向里增大,由楞次定律可判定此过程中电流沿逆时针方向,故C、D错误.由于穿过整个磁场区域的磁通量变化量ΔΦ=0,由q=可知整个过程中通过导线框的总电荷量也应为零,而在it图象中图线与时间轴所围总面积表示通过的总电荷量,为零,即时间轴的上下图形面积的绝对值应相等,故A错误,B正确.

[答案] B

 一矩形线圈abcd位于一随时间变化的匀强磁场内,磁场方向垂直于线圈所在的平面向里(如图9-7甲所示),磁感应强度B随时间t变化的规律如图乙所示.以I表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则下列选项中能正确表示线圈中电流I随时间t变化规律的是( )

图9-7

[技法攻略] 0~1 s内磁感应强度均匀增大,根据楞次定律和法拉第电磁感应定律可判定,感应电流为逆时针(为负值)、大小为定值,A、B错误;4~5 s内磁感应强度恒定,穿过线圈abcd的磁通量不变化,无感应电流,C正确,D错误.

[答案] C

试题详情

1.(2014·长沙一中质检)如图9-2所示,光滑平行的金属导轨MNPQ,间距L=1.0 m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0 T,垂直于导轨平面向上,MP间接有阻值R=2.0 Ω的电阻,其他电阻不计,质量m=2.0 kg的金属杆ab垂直导轨放置,用变力F沿导轨平面向上拉金属杆ab,若金属杆ab以恒定加速度a=2 m/s2由静止开始做匀变速运动,则:(g=10 m/s2)

图9-2

(1)在5 s内平均感应电动势是多少?

(2)第5 s末,回路中的电流多大?

(3)第5 s末,作用在ab杆上的外力F多大?

[解析] (1)ΔΦBΔSBLxBL·at2

由法拉第电磁感应定律得=②

联立解得,=10 V.③

(2)5 s末的瞬时速度为vat

5 s末的感应电动势为EBLv

由欧姆定律得I=⑥

联立解得I=10 A.⑦

(3)由安培力公式得FBIL

由牛顿第二定律得F-(Fmgsin30°)=ma

联立解得F=34 N.⑩

[答案] (1)10 V (2)10 A (3)34 N


灵活综合,融会贯通

物理方法是相通的,一种方法中往往包含着另一种或几种方法的使用,只有常用常练,才能熟能生巧,在解题中自然产生灵感,即所谓的灵机一动,才能将不同的方法、技巧有机地结合基础知识和基本规律,整合于综合运用之中,避免生搬硬套,达到融会贯通、灵活综合运用的更高境界,高考中自然胜人一筹.

 如图9-3甲所示,一正方形单匝线框abcd放在光滑绝缘水平面上,线框边长为L、质量为m、电阻为R.该处空间存在一方向竖直向下的匀强磁场,其右边界MN平行于ab,磁感应强度B随时间t变化的规律如图乙所示,0~t0时间内B随时间t均匀变化,t0时间后保持BB0不变.

(1)若线框保持静止,则在时间t0内产生的焦耳热为多少?

(2)若线框从零时刻起,在一水平拉力作用下由静止开始做匀加速直线运动,加速度大小为a,经过时间t0线框cd边刚要离开边界MN.则在此过程中拉力做的功为多少?

(3)在(2)的情况下,为使线框在离开磁场的过程中,仍以加速度a做匀加速直线运动,试求线框在离开磁场的过程中水平拉力F随时间t的变化关系.

图9-3

[解析] (1)线框中产生的感应电动势E==

在时间t0内产生的焦耳热Q

解得Q

(2)t0时刻线框的速度v0at0

在此过程中拉力做的功Wmv

解得Wma2t.

(3)设线框离开磁场过程的时间为t′,则有

Lv0t′+at2

解得t′= -t0

线框在离开磁场的过程中运动的速度vat

产生的感应电流I

由牛顿第二定律有FB0ILma

解得F=+ma (t0t≤ )

[答案] (1) (2)ma2t

(3)F=+ma(t0t≤ )

[即学即用]

试题详情


同步练习册答案