7.如图所示,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是( )
![]()
6.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是( )
A.∠ACD=∠DAB B.AD=DE C.AD2=BD·CD D.AD·AB=AC·BD
![]()
![]()
![]()
![]()
5.已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是( )
A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3
4.将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )
A.y=(x-4)2-6 B.y=(x-4)2-2 C.y=(x-2)2-2 D.y=(x-1)2-3
3.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是( )
A.155° B.145° C.110° D.35°
2.下列运算正确的是( )
A.3-1=-3 B.
=±3 C.(ab2)3=a3b6 D.a6÷a2=a3
一、选择题
1.若( )×(-2)=1,则括号内填一个实数应该是( )
A.
B.2 C.-2 D.-![]()
21.解:(I)当
时,![]()
当
,当
,
所以函数
在
和
单调递增,在
单调递减,
所以当
时,函数
取到极大值为
,
当
时,函数
取到极小值为-2. …………(6分)
(II)当
时,由函数
在其图像上一点
处的切线方程,
得![]()
设![]()
且![]()
…………(8分)
当
时,
在
上单调递减,
所以当
时,
;
当
时,
在
上单调递减,
所以当
时,
;
所以
在
不存在 “转点”. …………(10分)
当
时,
,即
在
上是增函数.
当
时,
当
时,
即点
为“转点”.
故函数
存在“转点”,且2是“转点”的横坐标. …………(12分)
23选修4—4:坐标系与参数方程
解:(Ⅰ)将直线
极坐标方程为
化为直角坐标方程:
.
将圆的参数方程化为普通方程:
,圆心为
,![]()
∴圆心
到直线的距离为![]()
,
∴直线
与圆
相离。……………… 4分
(Ⅱ)将椭圆的参数方程化为普通方程为
,
又∵直线
:
的斜率
,∴直线
的斜率为
,即倾斜角为
,
则直线
的参数方程为:
,即![]()
,
(2).把直线
的参数方程
代入
得:![]()
故可设
是上述方程的两个实根,则有
又直线
过点
,故由上式及
的几何意义得:
.……………… 10分
(24)选修4-5:不等式选讲
(Ⅰ)当
时,依题意得: ![]()
(法一)由绝对值的几何意义知不等式的解集为
。
(法二)不等式可化为
或
或
,
∴不等式的解集为
。………………5分
(Ⅱ)依题意得:关于
的不等式
在
上恒成立,…………6分
即
在
上恒成立,
………………8分
………………10分
20.
解:设点
的坐标为
,点
的坐标为
,
则
,
,所以
,
, ①
因为
在圆
上,所以
②
将①代入②,得点
的轨迹方程C的方程为
. ......4分
(Ⅱ)由题意知,
.
当
时,切线
的方程为
,点A、B的坐标分别为![]()
此时
,当
时,同理可得
; ----------6分
当
时,设切线
的方程为![]()
![]()
由![]()
得
③
设A、B两点的坐标分别为
,则由③得:
.-----------------------------9分
又由l与圆
相切,得
即
---10分
所以![]()
![]()
![]()
因为
且当
时,|AB|=2,所以|AB|的最大值为2
依题意,圆心
到直线AB的距离为圆
的半径,所以
面积
,当且仅当
时,
面积S的最大值为1,相应的
的坐标为
或者
.---------------12分
19、(12分)
(Ⅰ)证明:连结
,交
于点
,∴点
是
的中点.
∵点
是
的中点,∴
是
的中位线. ∴![]()
∵
平面
,
平面
,∴
平面
.………………………5分
(Ⅱ)解:
四边形
是梯形,
,![]()
又四边形
是矩形,
,又
,![]()
又
,![]()
。在
中,
,
由
可求得
……………… 6分
以
为原点,以
,
,
分别为
,
,
轴建立空间直角坐标系.… 7分
∴
,
,
,
,
∴
,
,
. 设平面
的法向量
,
∴
,
. ∴
令
,则
,
.
∴
. 又
是平面
的法向量,
∴![]()
如图所示,二面角
为锐角.
∴二面角
的余弦值是
…………………………12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com