0  203009  203017  203023  203027  203033  203035  203039  203045  203047  203053  203059  203063  203065  203069  203075  203077  203083  203087  203089  203093  203095  203099  203101  203103  203104  203105  203107  203108  203109  203111  203113  203117  203119  203123  203125  203129  203135  203137  203143  203147  203149  203153  203159  203165  203167  203173  203177  203179  203185  203189  203195  203203  447090 

2.在直角坐标系中描出下列各点,顺次用线段将这些点连起来,并将最后一点与第一点连起来,看看得到的是一个什么图形?

试题详情

1.判断下列说法是否正确:

(1)(2,3)和(3,2)表示同一点;

(2)点(-4,1)与点(4,-1)关于原点对称;

(3)坐标轴上的点的横坐标和纵坐标至少有一个为0;

(4)第一象限内的点的横坐标与纵坐标均为正数.

试题详情

4.分别关于x轴、y轴及原点的对称的两点坐标之间的关系.

试题详情

3.在四个象限内的点的坐标特征;两条坐标轴上的点的坐标特征;第一、三象限角平分线上点的坐标特征;第二、四象限角平分线上点的坐标特征;

试题详情

2.在直角坐标系中,根据坐标找出点;由点求出坐标的方法;

试题详情

1.平面直角坐标系的有关概念及画法;

试题详情

例1 在上图中分别描出坐标是(2,3)、(-2,3)、(3,-2)的点QSRQ(2,3)与P(3,2)是同一点吗?S(-2,3)与R(3,-2)是同一点吗?

 

Q(2,3)与P(3,2)不是同一点;

S(-2,3)与R(3,-2)不是同一点.

例2 写出图中的点ABCDEF的坐标.观察你所写出的这些点的坐标,回答:(1)在四个象限内的点的坐标各有什么特征?

(2)两条坐标轴上的点的坐标各有什么特征?

A(-1,2)、B (2,1)、C (2,-1)、D (-1,-1)、E (0,3)、F (-2,0).

(1)在第一象限内的点,横坐标是正数,纵坐标是正数;

在第二象限内的点,横坐标是负数,纵坐标是正数;

在第三象限内的点,横坐标是负数,纵坐标是负数;

在第四象限内的点,横坐标是正数,纵坐标是负数;

(2)x轴上点的纵坐标等于零;

y轴上点的横坐标等于零.

说明 从上面的例1、例2可以发现直角坐标系上每一个点的位置都能用一对有序实数表示,反之,任何一对有序实数在直角坐标系上都有唯一的一个点和它对应.也就是说直角坐标系上的点和有序实数对是一一对应的.

例3 在直角坐标系中描出点A(2,-3),分别找出它关于x轴、y轴及原点的对称点,并写出这些点的坐标.观察上述写出的各点的坐标,回答:

(1)关于x轴对称的两点的坐标之间有什么关系?

(2)关于 y轴对称的两点的坐标之间有什么关系?

(3)关于原点对称的两点的坐标之间又有什么关系?

(1)关于x轴对称的两点:横坐标相同,纵坐标绝对值相等,符号相反;

(2)关于y轴对称的两点:横坐标绝对值相等,符号相反,纵坐标相同;

(3)关于原点对称的两点:横坐标绝对值相等,符号相反,纵坐标也绝对值相等,符号相反.

例4 在直角坐标平面内,(1)第一、三象限角平分线上点的坐标有什么特点?(2)第二、四象限角平分线上点的坐标有什么特点?

分析 如图,P为第一、三象限角平分线上位于第一象限内任一点,作PMx轴于M,在RtPMO中,∠1=∠2=45°,所以|OM|=|MP|,则P点的横坐标,纵坐标绝对值相等,又因为P点位于第一象限内,OM为正值,MP也为正值,所以P点横坐标与纵坐标相同.同样若P点位于第三象限内,则OM为负值,MP也为负值,所以P点横坐标与纵坐标也相同.若P点为第二、四象限角平分线上任一点,则OMMP一正一负,所以P点横坐标与纵坐标互为相反数.

解 (1)第一、三象限角平分线上点:横坐标与纵坐标相同;

试题详情

问题1 例如你去过电影院吗?还记得在电影院是怎么找座位的吗?

解 因为电影票上都标有“×排×座”的字样,所以找座位时,先找到第几排,再找到这一排的第几座就可以了.也就是说,电影院里的座位完全可以由两个数确定下来.

问题2 在教室里,怎样确定一个同学的座位?

解 例如,××同学在第3行第4排.这样教室里座位也可以用一对实数表示.

问题3 要在一块矩形ABCD(AB=40mm,AD=25mm)的铁板上钻一个直径为10mm的圆孔,要求:

(1)孔的圆周上的点与AB边的最短距离为5mm,

(2)孔的圆周上的点与AD边的最短距离为15mm.

试问:钻孔时,钻头的中心放在铁板的什么位置?

分析 圆O的中心应是钻头中心的位置.因为⊙O直径为10mm,所以半径为5 mm,所以圆心OAD边距离为20mm,圆心OAB边距离为10mm.由此可见,确定一个点(圆心O)的位置要有两个数(20和10).

在数学中,我们可以用一对有序实数来确定平面上点的位置.为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系(rightangled coordinates system).通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点.

在平面直角坐标系中,任意一点都可以用一对有序实数来表示.例如,图中的点P,从点P分别向x轴和y轴作垂线,垂足分别为MN.这时,点Mx轴上对应的数为3,称为点P的横坐标(abscissa);点Ny轴上对应的数为2,称为点P的纵坐标(ordinate).依次写出点P的横坐标和纵坐标,得到一对有序实数(3,2),称为点P的坐标(coordinates).这时点P可记作P(3,2). 在直角坐标系中,两条坐标轴把平面分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,分别称为第一、二、三、四象限.坐标轴上的点不属于任何一个象限.

试题详情

如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.例如,点A在数轴上的坐标是4,点B在数轴上的坐标是-2.5.知道一个点的坐标,这个点的位置就确定了.

我们学过利用数轴研究一些数量关系的问题,在实际生活中.还会遇到利用平面图形研究数量关系的问题.

试题详情

4.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离开家后的距离S(千米)与时间t(时)的关系可以用图中的曲线表示.根据这个图象回答下列问题:

(1)小李到达离家最远的地方是什么时间?

(2)小李何时第一次休息?

(3)10时到13时,小骑了多少千米?

(4)返回时,小李的平均车速是多少?

试题详情


同步练习册答案