课本习题1.14 P38 1、2、3.
3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.
2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.
计算:
1. (a+b+c) 2. (a+b)
师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c) =[a+(b+c)] 对于(2)可化为(a+b) =(a+b)(a+b) .
学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述,教师板书.
解:1. (a+b+c) =[a+(b+c)]
=(a+b) +2(a+b)c+ c
=a +2ab+b +2ac+2bc+c
=a +b +c +2ab+2ac+2bc
1.(x-3) -x 2.(2a+b- )(2a-b+ )
师生共同分析:1中(x-3) 可利用完全平方公式.
学生动笔解答第1题.教师根据学生解答情况,板书如下:
解:1. (x-3) -x
=x +6x+9-x
=6x+9
师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.
学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.最后教师板书解题过程.
解:2. (2a+b- )(2a-b+ )
=[2a+(b- )][2a-(b- )]
=(2a) -(b- )
=4a -(b-3b+ )
=4a -b +3b-
例1. 利用完全平方式计算
1. 102 , 2. 197
师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便.
学生活动:在练习本上演示此题.让学生叙述,教师板书.
解:1.102 =(100+2) 2.197 =(200-3)
=100 +2 lOO 2+2, =200 -2 2O0 3十3 ,
=10000+400+4 =40000-1200+9
=10404 =38809
例2.计算:
3.你能比较(1)(2)的结果吗?说明你的理由.
师生共同讨论:学生回答(1)(a+b) (2)a +b (3)因为(a+b) =a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大.
2.边长分别为a、b拍的两个正方形面积和是多少?
1.边长为(a+b)的正方形面积是多少?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com