10.几种特殊的二次函数的图像特征如下:
|
函数解析式 |
开口方向 |
对称轴 |
顶点坐标 |
|
|
当 开口向上 当 开口向下 |
|
(0,0) |
|
|
|
(0, |
|
|
|
|
( |
|
|
|
|
( |
|
|
|
|
( |
9.抛物线
中,
的作用
(1)
决定开口方向及开口大小,这与
中的
完全一样.
(2)
和
共同决定抛物线对称轴的位置.由于抛物线
的对称轴是直线
,故:①
时,对称轴为
轴;②
(即
、
同号)时,对称轴在
轴左侧;③
(即
、
异号)时,对称轴在
轴右侧.
(3)
的大小决定抛物线
与
轴交点的位置.
当
时,
,∴抛物线
与
轴有且只有一个交点(0,
):
①
,抛物线经过原点; ②
,与
轴交于正半轴;③
,与
轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在
轴右侧,则
.
8.求抛物线的顶点、对称轴的方法
(1)公式法:
,∴顶点是
,对称轴是直线
.
(2)配方法:运用配方的方法,将抛物线的解析式化为
的形式,得到顶点为(
,
),对称轴是直线
.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数
相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
6.抛物线的三要素:开口方向、对称轴、顶点.
①
的符号决定抛物线的开口方向:当
时,开口向上;当
时,开口向下;
相等,抛物线的开口大小、形状相同.
②平行于
轴(或重合)的直线记作
.特别地,
轴记作直线
.
5.二次函数由特殊到一般,可分为以下几种形式:①
;②
;③
;④
;⑤
.
4.二次函数
用配方法可化成:
的形式,其中
.
3.二次函数
的图像是对称轴平行于(包括重合)
轴的抛物线.
2.二次函数
的性质
(1)抛物线
的顶点是坐标原点,对称轴是
轴.
(2)函数
的图像与
的符号关系.
①当
时
抛物线开口向上
顶点为其最低点;
②当
时
抛物线开口向下
顶点为其最高点.
(3)顶点是坐标原点,对称轴是
轴的抛物线的解析式形式为![]()
.
1.定义:一般地,如果
是常数,
,那么
叫做
的二次函数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com