0  308639  308647  308653  308657  308663  308665  308669  308675  308677  308683  308689  308693  308695  308699  308705  308707  308713  308717  308719  308723  308725  308729  308731  308733  308734  308735  308737  308738  308739  308741  308743  308747  308749  308753  308755  308759  308765  308767  308773  308777  308779  308783  308789  308795  308797  308803  308807  308809  308815  308819  308825  308833  447090 

1.碰撞的特点

  (1)作用时间极短,内力远大于外力,总动量总是守恒的。

(2)碰撞过程中,总动能不增。因为没有其它形式的能量转化为动能。

(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。

(4)碰撞过程中,两物体产生的位移可忽略。

试题详情

5、对系统应用动量定理。

系统的动量定理就是系统所受合外力的冲量等于系统总动量的变化。若将系统受到的每一个外力、系统内每一个物体的速度均沿正交坐标系x轴和y轴分解,则系统的动量定理的数学表达式如下:

对于不需求解系统内部各物体间相互作用力的问题,采用系统的动量定理求解将会使求解简单、过程明确。

例10、如图3所示, 质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为V0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?

分析与解:以汽车和拖车系统为研究对象,全过程系统受的合外力始终为,该过程经历时间为V0/μg,末状态拖车的动量为零。全过程对系统用动量定理可得:

注意:这种方法只能用在拖车停下之前。因为拖车停下后,系统受的合外力中少了拖车受到的摩擦力,因此合外力大小不再是

例11、如图4所示,矩形盒B的质量为M,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面间的动摩擦因数分别μ1、μ2,开始时二者均静止。现瞬间使物体A获取一向右且与矩形盒B左、右侧壁垂直的水平速度V0,以后物体A在盒B的左右壁碰撞时,B始终向右运动。当A与B最后一次碰撞后,B停止运动,A则继续向右滑行距离S后也停止运动,求盒B运动的时间t。

分析与解:以物体A、盒B组成的系统为研究对象,它们在水平方向所受的外力就是地面盒B的滑动摩擦力,而A与B间的摩擦力、A与B碰撞时的相互作用力均是内力。设B停止运动时A的速度为V,且假设向右为正方向,由系统的动量定理得:

当B停止运动后,对A应用动能定理得:

由以上二式联立解得:

问题4:能根据动量守恒条件判定系统的动量是否守恒?

例12、如图5所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:

A、动量守恒、机械能守恒

B、动量不守恒、机械能不守恒

C、动量守恒、机械能不守恒

D、动量不守恒、机械能守恒

分析与解:若以子弹、木块和弹簧合在一起作为研究对象(系统),从子弹开始射入木块到弹簧压缩至最短时,弹簧固定端墙壁对弹簧有外力作用,因此动量不守恒.而在子弹射入木块时,存在剧烈摩擦作用,有一部分能量将转化为内能,机械能也不守恒.实际上,在子弹射入木块这一瞬间过程,取子弹与木块为系统则可认为动量守恒(此瞬间弹簧尚未形变).子弹射入木块后木块压缩弹簧过程中,机械能守恒,但动量不守恒.物理规律总是在一定条件得出的,因此在分析问题时,不但要弄清取谁作研究对象,还要弄清过程的阶段的选取,判断各阶段满足物理规律的条件.

例13、质量为M的小车中挂有一个单摆,摆球的质量为M0,小车和单摆以恒定的速度V0沿水平地面运动,与位于正对面的质量为M1的静止木块发生碰撞,碰撞时间极短,在此过程中,下列哪些说法是可能发生的(  )

A.小车、木块、摆球的速度都发生变化,分别为V1、V2和V3,且满足:

(M+M0)V0=MV1+M1V2+M0V3

B.摆球的速度不变,小车和木块的速度为V1、V2,且满足:MV0=MV1+M1V2

C.摆球的速度不变,小车和木块的速度都为V,且满足:MV0=(M+M1)V;

D.小车和摆球的速度都变为V1,木块的速度变为V2,且满足:

(M+M0)V0=(M+M0)V1+M1V2

分析与解:小车与木块相碰,随之发生的将有两个过程:其一是,小车与木块相碰,作用时间极短,过程结束时小车与木块速度发生了变化,而小球的速度未变;其二是,摆球将要相对于车向右摆动,又导致小车与木块速度的改变。但是题目中已明确指出只需讨论碰撞的极短过程,不需考虑第二过程。因此,我们只需分析B、C两项。其实,小车与木块相碰后,将可能会出现两种情况,即碰撞后小车与木块合二为一或它们碰后又分开,前者正是C项所描述的,后者正是B项所描述的,所以B、C两项正确。

问题5:能根据动量守恒定律求解“合二为一”和“一分为二”问题。

“合二为一”问题:两个速度不同的物体,经过相互作用,最后达到共同速度。

“一分为二”问题:两个物体以共同的初速度运动,由于相互作用而分开各自以不同的速度运动。

例14、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时:

(1)两车的速度各为多少?(2)甲总共抛出了多少个小球?

分析与解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。

(1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。设共同速度为V,则:

      M1V1-M2V1=(M1+M2)V  

    (2)这一过程中乙小孩及时的动量变化为:△P=30×6-30×(-1.5)=225(kg·m/s)

每一个小球被乙接收后,到最终的动量弯化为  △P1=16.5×1-1.5×1=15(kg·m/s)

故小球个数为

例15、人和冰车的总质量为M,另有一个质量为m的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V推向前方弹性挡板,木箱与档板碰撞后又反向弹回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V推向挡板,如此反复多次,试求人推多少次木箱后将不可能再接到木箱?(已知)

解析:人每次推木箱都可看作“一分为二”的过程,人每次接箱都可以看作是“合二为一”的过程,所以本题为多个“一分为二”和“合二为一”过程的组合过程。

设人第一次推出后自身速度为V1  则:MV1=mV,

人接后第二次推出,自身速度为V2,则mV+2mV=MV2

 (因为人每完成接后推一次循环动作,自身动量可看成增加2mV)

设人接后第n次推出,自身速度为Vn,则mV+2mV(n-1)=MVn

∴Vn=(2n-1)V ,

若Vn≥V ,则人第n次推出后,不能再接回,将有关数据代入上式得n≥8.25,∴n=9。

问题6:会用动量守恒定律解“人船模型”问题

两个物体均处于静止,当两个物体存在相互作用而不受外力作用时,系统动量守恒。这类问题的特点:两物体同时运动,同时停止。

例16、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?

分析与解:气球和人原静止于空中,说明系统所受合力为零,故人下滑过程中系统动量守恒。人着地时,绳梯至少应触及地面,若设绳梯长为L,人沿绳梯滑至地面的时间为t,由动量守恒定律有:,解得

例17、如图7所示,质量为M的车静止在光滑水平面上,车右侧内壁固定有发射装置。车左侧内壁固定有沙袋。发射器口到沙袋的距离为d,把质量为m的弹丸最终射入沙袋中,这一过程中车移动的距离是_______。

分析与解:本题可把子弹看作“人”,把车看作“船”,这样就可以用“人船模型”来求解.

,解得

例18、质量为M、长为L的船静止在静水中,船头及船尾各站着质量分别为m1及m2的人,当两人互换位置后,船的位移有多大?

分析与解:利用“人船模型”易求得船的位移大小为:.提示:若m1>m2,本题可把(m1-m2)等效为一个人,把(M+2m2)看着船,再利用人船模型进行分析求解较简便。

问题7:会分析求解“三体二次作用过程”问题

所谓“三体二次作用”问题是指系统由三个物体组成,但这三个物体间存在二次不同的相互作用过程。解答这类问题必须弄清这二次相互作用过程的特点,有哪几个物体参加?是短暂作用过程还是持续作用过程?各个过程遵守什么规律?弄清上述问题,就可以对不同的物理过程选择恰当的规律进行列式求解。

例19、光滑的水平面上,用弹簧相连的质量均为2kg的A、B两物块都以V0=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在前方,如图8所示。B与C碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为     J时,物块A的速度是     m/s。

  分析与解:本题是一个“三体二次作用”问题:“三体”为A、B、C三物块。“二次作用”过程为第一次是B、C二物块发生短时作用,而A不参加,这过程动量守恒而机械能不守恒;第二次是B、C二物块作为一整体与A物块发生持续作用,这过程动量守恒机械能也守恒。

对于第一次B、C二物块发生短时作用过程,设B、C二物块发生短时作用后的共同速度为VBC,则据动量守恒定律得:

          (1)

对于第二次B、C二物块作为一整体与A物块发生持续作用,设发生持续作用后的共同速度为V,则据动量守恒定律和机械能守恒定律得:

   mAV0+       (2)

    (3)

由式(1)、(2)、(3)可得:当弹簧的弹性势能达到最大为EP=12J时,物块A的速度V=3 m/s。

例20、如图9所示为三块质量均为m,长度均为L的木块。木块1和木块2重叠放置在光滑的水平桌面上,木块3沿光滑水平桌面运动并与叠放在下面的木块2发生碰撞后粘合在一起,如果要求碰后原来叠放在上面的木块1完全移到木块3上,并且不会从木块3上掉下,木块3碰撞前的动能应满足什么条件?设木块之间的动摩擦因数为m。

分析与解:设第3块木块的初速度为V0,对于3、2两木块的系统,设碰撞后的速度为V1,据动量守恒定律得:mV0=2mV1            1

对于3、2整体与1组成的系统,设共同速度为V2,则据动量守恒定律得:

     2mV1=3mV2         2

(1)第1块木块恰好运动到第3块上,首尾相齐,则据能量守恒有:

         3

由123联立方程得:Ek3=6μmgL        4

(2)第1块运动到第3块木块上,恰好不掉下,据能量守恒定律得:

     5

由125联立方程得:Ek3=9μmgL 

故:

问题8、会分析求解“二体三次作用过程”问题

所谓“二体三次作用”问题是指系统由两个物体组成,但这两个物体存在三次不同的相互作用过程。求解这类问题的关键是正确划分三个不同的物理过程,并能弄清这些过程的特点,针对相应的过程应用相应的规律列方程解题。

例21、如图10所示,打桩机锤头质量为M,从距桩顶h高处自由下落,打在质量为m的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深入泥土的距离为S,那么在木桩下陷过程中泥土对木桩的平均阻力是多少?

分析与解:这是一道联系实际的试题。许多同学对打木桩问题的过程没有弄清楚,加上又不理解“作用时间极短”的含意而酿成错误。其实

打木桩问题可分为三个过程:

 其一:锤头自由下落运动过程,设锤刚与木桩接

触的速度为V0,则据机械能守恒定律得:

Mgh=,所以V0=

其二:锤与木桩的碰撞过程,由于作用时间极短,

内力远大于外力,动量守恒,设碰后的共同速度为V,

据动量守恒定律可得:

MV0=(M+m)V,  所以V=

其三:锤与桩一起向下做减速运动过程,设在木桩下陷过程中泥土对木桩的平均阻力为f,由动能定理可得:

(M+m)gS-fS=0-,所以f=(M+m)g+.

例22、如图11所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ。最初木板静止,A、B两木块同时以方向水平向右的初速度V0和2V0在木板上滑动,木板足够长, A、B始终未滑离木板。求:

  (1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;

  (2)木块A在整个过程中的最小速度。

分析与解:(1)木块A先做匀减速直线运动,后做匀加速直线运动;木块B一直做匀减速直线运动;木板C做两段加速度不同的匀加速直线运动,直到A、B、C三者的速度相等为止,设为V1。对A、B、C三者组成的系统,由动量守恒定律得:

解得:V1=0.6V0

对木块B运用动能定理,有:

解得

(2)设木块A在整个过程中的最小速度为V′,所用时间为t,由牛顿第二定律:

对木块A:,

对木板C:,

当木块A与木板C的速度相等时,木块A的速度最小,因此有:

    

解得

木块A在整个过程中的最小速度为:

问题9:会用动量守恒定律解“碰撞类”问题

试题详情

4、求解流体问题

   例9 、某种气体分子束由质量m=5.4X10-26kg速度V=460m/s的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,如分子束中每立方米的体积内有n0=1.5X1020个分子,求被分子束撞击的平面所受到的压强.

分析与解:设在△t时间内射到 S的某平面上的气体的质量为ΔM,则:

  

取ΔM为研究对象,受到的合外力等于平面作用到气体上的压力F以V方向规定为正方向,由动量定理得:-F.Δt=ΔMV-(-ΔM.V),解得

平面受到的压强P为:

注意:处理有关流体(如水、空气、高压燃气等)撞击物体表面产生冲力(或压强)的问题,可以说非动量定理莫属.解决这类问题的关键是选好研究对象,一般情况下选在极短时间△t内射到物体表面上的流体为研究对象

试题详情

3、求解曲线运动问题      

    例8、 如图 2所示,以Vo =10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球.忽略空气阻力的作用,g取10m/s2.求抛出后第2s末小球速度的大小.

分析与解:小球在运动过程中只受到重力的作用,在水平方向做匀速运动,在竖直方向做匀变速运动,竖直方向应用动量定理得:  Fyt=mVy-mVy0

 所以mgt=mVy-(-mV0.sin300),

解得Vy=gt-V0.sin300=15m/s.

而Vx=V0.cos300=

  在第2s未小球的速度大小为:

  注意: 动量定理不仅适用于物体做直线运动的问题,而且也适用物体做曲线运动的问题,在求解曲线运动问题中,一般以动量定理的分量形式建立方程,即:

 Fxt=mVx-mVx0   Fyt=mVy-mVy0

试题详情

2.求解平均力问题

   例7 、质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为1.2s,安全带伸直后长5m,求安全带所受的平均冲量.( g= 10m/s2)

  分析与解:人下落为自由落体运动,下落到底端时的速度为:   

取人为研究对象,在人和安全带相互作用的过程中,人受到重力mg和安全带给的冲力 F,取F方向为正方向,由动量定理得: Ft=mV-mV0

所以,(方向竖直向下)

注意: 动量定理既适用于恒力作用下的问题,也适用于变力作用下的问题.如果是在变力作用下的问题,由动量定理求出的力是在t时间内的平均值.

试题详情

问题1:掌握求恒力和变力冲量的方法。

恒力F的冲量直接根据I=Ft求,而变力的冲量一般要由动量定理或F-t图线与横轴所夹的面积来求。

例1、质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?

分析与解:力的作用时间都是,力的大小依次是mg

mgcosθ和mg.sinθ,所以它们的冲量依次是:

 

特别要注意,该过程中弹力虽然不做功,但对物体有冲量。

例2、一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各是多少?

分析与解:经过t=10s后,F1的冲量I1=10×10/2=50N.S

F2的冲量I2=-50N.S,合力F的冲量为0.

例3、一质量为100g的小球从0.80m高处自由下落到一厚软垫上.若从小球接触软垫到小球陷至最低点经历了0.2s,则这段时间内软垫对小球的冲量为________.(取 g=10m/s2,不计空气阻力).

分析与解:小球从高处自由下落到软垫陷至最低点经历了两个过程,从高处自由下落到接触软垫前一瞬间,是自由下落过程,接触软垫前一瞬间速度由:,求出.

接触软垫时受到软垫向上作用力N和重力G(=mg)作用,规定向下为正,由动量定理:

(mg-N)t=0-m

故有:

在重物与地面撞击问题中,是否考虑重力,取决于相互作用力与重力大小的比较,此题中N=0.3N,mg=0.1N,显然在同一数量级上,不可忽略.若二者不在同一数量级,相差极大,则可考虑忽略不计(实际上从同一高度下落,往往要看撞击时间是否极短,越短冲击力越大).

   问题2:掌握求动量及动量变化的方法。

求动量的变化要用平行四边形定则或动量定理。

例4、以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变化是多少?

分析与解:因为合外力就是重力,所以Δp=Ft=mgt

例5、 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则(   )

   A、过程I中钢珠的动量的改变量等于重力的冲量

   B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小

   C、I、Ⅱ两个过程中合外力的总冲量等于零

   D、过程Ⅱ中钢珠的动量的改变量等于零

 分析与解:根据动量定理可知,在过程I中,钢珠从静止状态自由下落.不计空气阻力,小球所受的合外力即为重力,因此钢珠的动量的改变量等于重力的 冲量,选项A正确;过程I中阻力的冲量的大小等于过程I中重力的冲量的大小与过程Ⅱ中重力的冲量的大小之和,显然B选项不对;在I、Ⅱ两个过程中,钢珠动量的改变量各不为零.且它们大小相等、方向相反,但从整体看,钢珠动量的改变量为零,故合外力的总冲量等于零,故C选项正确,D选项错误。因此,本题的正确选项为A、C。

问题3:能应用动量定理求解相关问题

遇到涉及力、时间和速度变化的问题时.运用动量定理解答往往比运用牛顿运     动定律及运动学规律求解简便。应用动量定理解题的思路和一般步骤为:

   (l)明确研究对象和物理过程;

   (2)分析研究对象在运动过程中的受力情况;

   (3)选取正方向,确定物体在运动过程中始末两状态的动量;

   (4)依据动量定理列方程、求解。

1.简解多过程问题。

例6、一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平     面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经 过t3=6s停下来。试求物体在水平面上所受的摩擦力。

   分析与解:规定推力的方向为正方向,在物体运动的整个过程中,物体的初动量P1=0,?末动量P2=O。据动量定理有: ?

 即:?,解得 ?

   由例6可知,合理选取研究过程,能简化解题步骤,提高解题速度。本题也可以用牛顿运动定律求解。同学们可比较这两种求解方法的简繁情况。        .

试题详情

4、深刻理解动量守恒定律

(1).动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即:

(2)动量守恒定律成立的条件

1系统不受外力或者所受外力之和为零;

2系统受外力,但外力远小于内力,可以忽略不计;

3系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

4全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

(3).动量守恒定律的表达形式:除了,即p1+p2=p1/+p2/外,还有:Δp1+Δp2=0,Δp1= -Δp2

(4)动量守恒定律的重要意义

从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23 ②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。

试题详情

3、深刻理解动量定理

(1).动量定理:物体所受合外力的冲量等于物体的动量变化。既I=Δp

(2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

(3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。

(4)现代物理学把力定义为物体动量的变化率:(牛顿第二定律的动量形式)。

(5)动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。

试题详情

2、深刻理解冲量的概念

(1)定义:力和力的作用时间的乘积叫做冲量:I=Ft

(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

(3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。

(4)高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

(5)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。特别是力作用在静止的物体上也有冲量。

试题详情

1、深刻理解动量的概念

(1)定义:物体的质量和速度的乘积叫做动量:p=mv

(2)动量是描述物体运动状态的一个状态量,它与时刻相对应。

(3)动量是矢量,它的方向和速度的方向相同。

(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。

(5)动量的变化:.由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。

A、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。

B、若初末动量不在同一直线上,则运算遵循平行四边形定则。

(6)动量与动能的关系:,注意动量是矢量,动能是标量,动量改变,动能不一定改变,但动能改变动量是一定要变的。

试题详情


同步练习册答案