41.(2009福建卷文).c.o.m
已知函数
其中
,![]()
(I)若
求
的值;
(Ⅱ)在(I)的条件下,若函数
的图像的相邻两条对称轴之间的距离等于
,求函数
的解析式;并求最小正实数
,使得函数
的图像象左平移
个单位所对应的函数是偶函数。
解法一:
(I)
由
得![]()
即
又
![]()
(Ⅱ)由(I)得,![]()
依题意,![]()
又![]()
故函数
的图像向左平移
个单位后所对应的函数为
![]()
是偶函数当且仅当![]()
即![]()
从而,最小正实数![]()
解法二:
(I)同解法一
(Ⅱ)由(I)得,
![]()
依题意,
![]()
又
,故![]()
函数
的图像向左平移
个单位后所对应的函数为![]()
是偶函数当且仅当
对
恒成立
亦即
对
恒成立。
![]()
![]()
即
对
恒成立。
![]()
故![]()
![]()
从而,最小正实数![]()
40.(2009湖南卷理)在
,已知
,求角A,B,C的大小.
解:设![]()
由
得
,所以![]()
又
因此
由
得
,于是![]()
所以
,
,因此
,既![]()
由A=
知
,所以
,
,从而
或
,既
或
故
或![]()
40.(2009湖北卷文) 在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且![]()
(Ⅰ)确定角C的大小:
![]()
(Ⅱ)若c=
,且△ABC的面积为![]()
,求a+b的值。
解(1)由
及正弦定理得,
![]()
![]()
是锐角三角形,![]()
(2)解法1:
由面积公式得
![]()
由余弦定理得
![]()
![]()
由②变形得![]()
解法2:前同解法1,联立①、②得
![]()
消去b并整理得
解得![]()
所以
故
![]()
39.(2009陕西卷理)(本小题满分12分)
已知函数
(其中
)的图象与x轴的交点中,相邻两个交点之间的距离为
,且图象上一个最低点为
.
(Ⅰ)求
的解析式;(Ⅱ)当
,求
的值域.
解(1)由最低点为
得A=2.
由x轴上相邻的两个交点之间的距离为
得
=
,即
,![]()
由点
在图像上的![]()
故
![]()
又![]()
(2)![]()
![]()
当
=
,即
时,
取得最大值2;当![]()
即
时,
取得最小值-1,故
的值域为[-1,2]
![]()
38.(2009全国卷Ⅱ理)设
的内角
、
、
的对边长分别为
、
、
,
,
,求
。
分析:由
,易想到先将
代入
得
。然后利用两角和与差的余弦公式展开得
;又由
,利用正弦定理进行边角互化,得
,进而得
.故
。大部分考生做到这里忽略了检验,事实上,当
时,由
,进而得
,矛盾,应舍去。
也可利用若
则
从而舍去
。不过这种方法学生不易想到。
评析:本小题考生得分易,但得满分难。
37.(2009江西卷理)△
中,
所对的边分别为
,
,
.
(1)求
;
(2)若
,求
.
解:(1) 因为
,即
,
所以
,
即
,
得
. 所以
,或
(不成立).
即
, 得
,所以.![]()
又因为
,则
,或
(舍去)
得![]()
(2)
,
又
, 即
,
得![]()
36.(2009江西卷文)(本小题满分12分)
在△
中,
所对的边分别为
,
,
.
(1)求
;
(2)若
,求
,
,
.
解:(1)由
得 ![]()
则有
=![]()
得
即
.
(2) 由
推出
;而
,
即得
,
则有
解得 ![]()
35.(2009全国卷Ⅱ文)(本小题满分12分)设△ABC的内角A、B、C的对边长分别为a、b、c,
,
,求B.
解析:本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=
(负值舍掉),从而求出B=
。
解:由 cos(A
C)+cosB=
及B=π
(A+C)
cos(A
C)
cos(A+C)=
,
cosAcosC+sinAsinC
(cosAcosC
sinAsinC)=
,
sinAsinC=
.
又由
=ac及正弦定理得
![]()
![]()
故
,
或
(舍去),
于是 B=
或 B=
.
又由
知
或![]()
所以 B=
。
34.(2009山东卷文)(本小题满分12分)设函数f(x)=2
在
处取最小值.
(1)
求
.的值;
(2)
在
ABC中,
分别是角A,B,C的对边,已知![]()
,求角C..
解: (1)![]()
![]()
因为函数f(x)在
处取最小值,所以
,由诱导公式知
,因为
,所以
.所以
![]()
(2)因为
,所以
,因为角A为
ABC的内角,所以
.又因为
所以由正弦定理,得
,也就是
,
因为
,所以
或
.
当
时,
;当
时,
.
[命题立意]:本题主要考查了三角函数中两角和差的弦函数公式、二倍角公式和三角函数的性质,并利用正弦定理解得三角形中的边角.注意本题中的两种情况都符合.
33.(2009山东卷理)(本小题满分12分)设函数f(x)=cos(2x+
)+sin
x.
(1) 求函数f(x)的最大值和最小正周期.
(2)
设A,B,C为
ABC的三个内角,若cosB=
,
,且C为锐角,求sinA.
解: (1)f(x)=cos(2x+
)+sin
x.=![]()
所以函数f(x)的最大值为
,最小正周期
.
![]()
(2)
=
=-
, 所以
, 因为C为锐角, 所以
,
又因为在
ABC 中,
cosB=
, 所以
, 所以
![]()
.
[命题立意]:本题主要考查三角函数中两角和差的弦函数公式、二倍角公式、三角函数的性质以及三角形中的三角关系.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com