5、在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF∩HG=M,则点M( ).
(A)一定在AC上 (B)一定在BD上
(C)可能在AC上,也可能在BD上 (D)既不在AC上,也不在BD上
4、已知M表示平面,a、b表示直线,给出下面四个命题:
①若a//b,a⊥M,则b⊥M; ②若a⊥M,b⊥M,则a//b;
③若a⊥M,a⊥b,则b//M; ④若a//M ,a⊥b,则b⊥M.
其中正确的命题的选项是( ).
(A) ①② (B) ①②③ (C) ②③④ (D) ①②④
3、已知直线a
平面α,则直线b//a是b//α的( ).
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分又不必要条件
2、若a、b、c为三条直线,且a⊥c,b⊥c,则a、b位置关系是( ).
(A) 相交 (B)平行 (C)异面 (D)相交、平行或异面
1、一条直线和梯形两腰垂直,则这条直线和底边的位置关系是( ).
(A)相交不垂直 (B)平行 (C)垂直 (D)不确定
21.解:
(Ⅰ)
.·································· 2分
当
(
)时,
,即
;
当
(
)时,
,即
.
因此
在每一个区间
(
)是增函数,
在每一个区间
(
)是减函数.·································· 6分
(Ⅱ)令
,则
![]()
![]()
.
故当
时,
.
又
,所以当
时,
,即
.···························· 9分
当
时,令
,则
.
故当
时,
.
因此
在
上单调增加.
故当
时,
,
即
.
于是,当
时,
.
当
时,有
.
因此,
的取值范围是
. 12分
21.(Ⅰ)解:依题设得椭圆的方程为
,
直线
的方程分别为
,
.············································ 2分
如图,设
,其中
,
且
满足方程
,
故
.①
由
知
,得
;
由
在
上知
,得
.
所以
,化简得
,
解得
或
.···································································································· 6分
(Ⅱ)解法一:根据点到直线的距离公式和①式知,点
到
的距离分别为
,
.································································ 9分
又
,所以四边形
的面积为
![]()
![]()
![]()
![]()
,
当
,即当
时,上式取等号.所以
的最大值为
.····························· 12分
解法二:由题设,
,
.
设
,
,由①得
,
,
故四边形
的面积为![]()
···················································································································· 9分
![]()
![]()
![]()
,
当
时,上式取等号.所以
的最大值为
.·············································· 12分
20.解:
(Ⅰ)依题意,
,即
,
由此得
.··················································································· 4分
因此,所求通项公式为
,
.①········································································ 6分
(Ⅱ)由①知
,
,
于是,当
时,
![]()
![]()
,
![]()
,
当
时,![]()
.又
.
综上,所求的
的取值范围是
.··································································· 12分
18.解法一:
依题设知
,
.
(Ⅰ)连结
交
于点
,则
.
由三垂线定理知,
.····················································································· 3分
在平面
内,连结
交
于点
,
由于
,
故
,
,
与
互余.
于是
.
与平面
内两条相交直线
都垂直,
所以![]()
平面
.······························································································· 6分
(Ⅱ)作
,垂足为
,连结
.由三垂线定理知
,
故
是二面角
的平面角.································································· 8分
,
,
.
,
.
又
,
.
.
所以二面角
的大小为
.·························································· 12分
解法二:
以
为坐标原点,射线
为
轴的正半轴,
建立如图所示直角坐标系
.
依题设,
.
,
.················································································ 3分
(Ⅰ)因为
,
,
故
,
.
又
,
所以
平面
.································································································ 6分
(Ⅱ)设向量
是平面
的法向量,则
,
.
故
,
.
令
,则
,
,
.······························································ 9分
等于二面角
的平面角,
.
所以二面角
的大小为
.························································· 12分
17.解:
各投保人是否出险互相独立,且出险的概率都是
,记投保的10 000人中出险的人数为
,
则
.
(Ⅰ)记
表示事件:保险公司为该险种至少支付10
000元赔偿金,则
发生当且仅当
, 2分
![]()
![]()
,又
,
故
.·············································································································· 5分
(Ⅱ)该险种总收入为
元,支出是赔偿金总额与成本的和.
支出
,
盈利
,
盈利的期望为
,················································· 9分
由
知,
,
![]()
.
![]()
![]()
![]()
(元).
故每位投保人应交纳的最低保费为15元.··································································· 12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com