0  396020  396028  396034  396038  396044  396046  396050  396056  396058  396064  396070  396074  396076  396080  396086  396088  396094  396098  396100  396104  396106  396110  396112  396114  396115  396116  396118  396119  396120  396122  396124  396128  396130  396134  396136  396140  396146  396148  396154  396158  396160  396164  396170  396176  396178  396184  396188  396190  396196  396200  396206  396214  447090 

1.(福建21)(1)(本小题满分7分)选修4-4:矩阵与变换                  

已知矩阵M所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标

(2)(本小题满分7分)选修4-4:坐标系与参数方程

已知直线l:3x+4y-12=0与圆C:  (为参数 )试判断他们的公共点个数

(3)(本小题满分7分)选修4-5:不等式选讲

解不等式∣2x-1∣<∣x∣+1

试题详情

32. 解:(1)图中共有5个三角形;··········································· (2分)

  (2)△≌△. ·············································· (3分)

   ∵ △是等边三角形,∴ ∠.···················· (4分)

是边的中点,

AE=AG=CG=CF=AB. ····································································· (6分)

∴ △≌△. ········································································· (7分)

试题详情

31. (1)如图:

(2)证明即可.

试题详情

30. 解:(1)略.

(2)证明:∵BC=BD,点E是BC的中点,点F是BD的中点,

∴BE=BF.又∠ABC=∠ABD,AB=AB,∴△ABE≌△ABF.

试题详情

29. 解:(1)如右图;

(2)

理由:过,四边形为矩形,

中,

试题详情

28. 证明:

∴在

试题详情

27. 证明:

·················································································································· 1分

  ·········································· 2分

  ································································ 1分

    1分

试题详情

26. (1) 证明:∵∠A=∠A′ AC=A′C ∠ACM=∠A′CN=900-∠MCN

(2)在Rt△ABC中

,∴∠A=900-300=600

  又∵,∴∠MCN=300

∴∠ACM=900-∠MCN=600

∴∠EMB′=∠AMC=∠A=∠MCA=600

  ∵∠B′=∠B=300

所以三角形MEB′是Rt△MEB′且∠B′=300

所以MB′=2ME

试题详情

25. 证明:(1)∵CF∥BE∴EBD=FCD

又∵∠BDE=∠CDF,BD=CD

∴△BDE≌△CDF

(2)四边形BECF是平行四边形

由△BDE≌△CDF得ED=FD

∵BD=CD

∴四边形BECF是平行四边形

试题详情

24. (1)(或相等)

(2)(或成立),理由如下

方法一:由,得

方法二、连接AD,同方法一,,所以AF=DC。

。可证

(3)如图,

方法一:由点B与点E重合,得

所以点B在AD的垂直平分线上,

所以OA=OD,点O在AD的垂直平分线上,故

方法二:延长BO交AD于点G。同方法一OA=OD,可证

试题详情


同步练习册答案