科目:初中数学 来源:福建省厦门市2017届九年级上学期质量检测数学试卷 题型:解答题
已知y1=a1(x﹣m)2+5,点(m,25)在抛物线y2=a2x2+b2x+c2上,其中m>0.
(1)若a1=﹣1,点(1,4)在抛物线y1=a1(x﹣m)2+5上,求m的值;
(2)记O为坐标原点,抛物线y2=a2x2+b2x+c2的顶点为M,若c2=0,点A(2,0)在此抛物线上,∠OMA=90°,求点M的坐标;
(3)若y1+y2=x2+16x+13,且4a2c2﹣b22=﹣8a2,求抛物线y2=a2x2+b2x+c2的解析式.
查看答案和解析>>
科目:初中数学 来源:福建省厦门市五校2018届九年级上学期期中联考数学试卷 题型:单选题
已知抛物线y=ax2+bx+c和y=max2+mbx+mc,其中a,b,c,m均为正数,且m≠1.则关于这两条抛物线,下列判断正确的是( )
A. 顶点的纵坐标相同 B. 对称轴相同
C. 与y轴的交点相同 D. 其中一条经过平移可以与另一条重合
查看答案和解析>>
科目:初中数学 来源:江苏省等八校2018届九年级上学期第二次阶段检测数学试卷 题型:解答题
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点 D,其中点B的坐标为(3,0).
(1)求抛物线的解析式;
(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小;若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由.
(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD。若存在,求出点T的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:江苏省等八校2018届九年级上学期第二次阶段检测数学试卷 题型:解答题
已知二次函数y=﹣x2+bx+c的图象经过A(﹣2,﹣1),B(0,7)两点.
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
查看答案和解析>>
科目:初中数学 来源:江苏省等八校2018届九年级上学期第二次阶段检测数学试卷 题型:单选题
二次函数 y=ax²+bx+2(a≠0)的图像经过点(-1,1)则代数 1-a+b 的值为( )
A. -3 B. -1 C. 2 D. 5
查看答案和解析>>
科目:初中数学 来源:江苏省扬州市2018届九年级12月月考数学试卷 题型:填空题
如图,△ABC中,AE交BC于点D,∠CAE=∠CBE,AD:DE=3:5,AE=16,BD=8,则DC的长等于__.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com