在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.
![]()
科目:初中数学 来源:2017年山东省中考数学二模试卷 题型:单选题
数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作S△ABC,小颖画的三角形面积记作S△DEF,那么你认为( )
![]()
A. S△ABC>S△DEF B. S△ABC<S△DEF C. S△ABC=S△DEF D. 不能确定
C 【解析】试题解析:如图,过点A.D分别作AG⊥BC,DH⊥EF,垂足分别为G、H, 在Rt△ABG中, 在Rt△DHE中, ∴AG=DH. ∵BC=4,EF=4, 故选C.查看答案和解析>>
科目:初中数学 来源:福建省建瓯市2018届九年级数学上册期末测试卷 题型:解答题
如图,在Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC于点D,点E为BC的中点,连接DE.
![]()
(1)求证:DE是半圆⊙O的切线;
(2)若∠BAC=30°,DE=2,求AD的长.
(1)证明见解析;(2) AD=6. 【解析】试题分析:(1)连接OD,OE,由AB为圆的直径得到三角形BCD为直角三角形,再由E为斜边BC的中点,得到DE=BE=DC,再由OB=OD,OE为公共边,利用SSS得到三角形OBE与三角形ODE全等,由全等三角形的对应角相等得到DE与OD垂直,即可得证; (2)在直角三角形ABC中,由∠BAC=30°,得到BC为AC的一半,根据BC=2DE...查看答案和解析>>
科目:初中数学 来源:福建省建瓯市2018届九年级数学上册期末测试卷 题型:单选题
从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是( )
![]()
A.
B.
C.
D. 1
查看答案和解析>>
科目:初中数学 来源:2017年吉林省长春市中考数学模拟试卷 题型:解答题
如图①,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)(t>0).
(1)求线段AC的长.
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式.
(3)若边EF与边AC交于点Q,连结PQ,如图②.
①当PQ将△PEF的面积分成1:2两部分时,求AP的长.
②直接写出PQ的垂直平分线经过△ABC的顶点时t的值.
![]()
查看答案和解析>>
科目:初中数学 来源:2017年吉林省长春市中考数学模拟试卷 题型:填空题
如图,在平面直角坐标系中,函数
(x>0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF的面积为_____.
![]()
查看答案和解析>>
科目:初中数学 来源:2017年吉林省长春市中考数学模拟试卷 题型:单选题
如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=50°,则∠CAD的大小为( )
![]()
A. 50° B. 65° C. 80° D. 60°
B 【解析】∵在△ABC中,AB=AC,∠1=50°, ∴∠C=∠B=, 又∵AD∥BC, ∴∠CAD=∠C=65°. 故选B.查看答案和解析>>
科目:初中数学 来源:2017-2018学年度第一学期海南省海口市七年级数学科期末检测模拟 题型:单选题
如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是( )
![]()
A. ∠1=∠2 B. ∠3=∠4 C. ∠C=∠CBE D. ∠C+∠ABC=180°
B 【解析】A. ∵∠1=∠3,∴AB∥CD, 故不正确; B. ∵ ∠2=∠4 , ∴AD∥BC, 故正确; C. ∵∠C=∠CBE , ∴AB∥CD, 故不正确; D. ∵∠C+∠ABC=180º, ∴AB∥CD, 故不正确; 故选B.查看答案和解析>>
科目:初中数学 来源:山东省德州市2018届九年级上期末模拟数学试卷 题型:解答题
如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.
![]()
(1)求A,B,C三点的坐标;
(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求点P的坐标;
(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.
(1)C(0,3),A(﹣1,0),B(3,0);(2)当t=时,△BCM的面积最大,此时P点坐标为( , );(3)Q点的坐标为(1, )或(1, )或(1, )或(1,﹣). 【解析】试题分析:(1)在抛物线解析式中,令x=0可求得C点坐标,令y=0则可求得A、B的坐标;(2)由B、C的坐标可求得直线BC的解析式为y=﹣x+3,可设P点坐标为(t,﹣t+3),则可表示出M点坐标,则可求得...查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com