精英家教网 > 初中数学 > 题目详情

若方程无实数根,化简:

【解析】根据方程无实数根,可列不等式,解之即可得出k的取值范围,再根据k的取值范围化简即可. 【解析】 方程无实数根, ,解得, ∴.
练习册系列答案
相关习题

科目:初中数学 来源:2017年吉林省中考数学一诊试卷 题型:填空题

如图,△ABC中,∠C=90°,AC=6,BC=8,动点P从A点出发,以1cm/s的速度,沿A﹣C﹣B向B点运动,同时,动点Q从C点出发,以2cm/s的速度,沿C﹣B﹣A向A点运动,当其中一点运动到终点时,两点同时停止运动.设运动时间为t秒,当t=_____秒时,△PCQ的面积等于8cm2.

2或4或 【解析】设经过t秒钟,△PCQ的面积等于8. ①当0<t≤4时,P在AC上,Q在BC上,则PC=6-t,CQ=2t. ∴△PCQ的面积= PC•CQ= ,解得:t=2或t=4. ②当4<t≤6时,P在AC上,Q在AB上,如图,∵AC=6,BC=8,∴AC=10.过Q作QH⊥AC于H,则PC=6-t,BQ=2t-8,AQ=18-2t.∵QH∥BC,∴ ,∴ ,解得:...

查看答案和解析>>

科目:初中数学 来源:2017年吉林省长春市中考数学模拟试卷(7) 题型:解答题

如图,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣4与y轴交于点A,顶点为B,点A的坐标为(0,﹣2),点C在抛物线上(不与点A,B重合),过点C作y轴的垂线交抛物线于点D,连结AC,AD,CD,设点C的横坐标为m.

(1)求这条抛物线所对应的函数表达式.

(2)用含m的代数式表示线段CD的长.

(3)点E是抛物线对称轴上一点,且点E的纵坐标比点C的纵坐标小1,连结BD,DE,设△ACD的面积为S1,△BDE的面积为S2,且S1•S2≠0,求S2=S1时m的值.

(4)将抛物线y=a(x﹣2)2﹣4沿x=2平移,得到抛物线y=a(x﹣2)2+k,过点C作y轴平行线与抛物线y=a(x﹣2)2+k交于点F,若CD与y轴交于点G,且CD=6,直接写出使AC=FG的点F的坐标.

(1)y=x2﹣2x﹣2;(2)当m<2,且m≠0时,CD=4﹣2m;当m>2时,CD=2m﹣4;(3)m=2±或m=;(4)点F的坐标为(﹣1,﹣2)或(﹣1,3)或(5,﹣2)或(5,3) 【解析】试题分析:(1)把A(0,-2)代入抛物线切线a=即可; (2)抛物线的对称轴为直线x=2,且点C的横坐标为m,得出当m<2,且m≠0时,CD=4-2m,当m>2时,CD=2m-4; ...

查看答案和解析>>

科目:初中数学 来源:2017年吉林省长春市中考数学模拟试卷(7) 题型:单选题

如图,A,B,C为⊙O上三点,若∠ACB=20°,则∠BAO的大小为(  )

A. 40° B. 60° C. 70° D. 80°

C 【解析】∵∠ACB=20°, ∴∠AOB=2×20°=40°, ∵AO=BO, ∴∠BAO=∠OBA=(180°?40°)÷2=70°, 故选:C.

查看答案和解析>>

科目:初中数学 来源:山东省2018届九年级12月月考数学试卷 题型:解答题

如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.

(1)求证:AB=BE;

(2)若PA=2,cosB=,求⊙O半径的长.

(1)证明见解析;(2)3. 【解析】试题分析:(1)连接OD,由PD切⊙O于点D,得到OD⊥PD,由于BE⊥PC,得到OD∥BE,得出∠ADO=∠E,根据等腰三角形的性质和等量代换可得结果; (2)由(1)知,OD∥BE,得到∠POD=∠B,根据三角函数的定义即可得到结果. 试题解析:(1)证明:连接OD, ∵PD切⊙O于点D, ∴OD⊥PD, ∵BE⊥PC,...

查看答案和解析>>

科目:初中数学 来源:山东省2018届九年级12月月考数学试卷 题型:填空题

如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____cm.

10 【解析】试题分析:先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解. 如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm. 连接OC,交AB于D点.连接OA. ∵尺的对边平行,光盘与外边缘相切, ∴OC⊥AB. ∴AD=4cm. 设半径为Rcm,则R2=42+(R﹣2)2, ...

查看答案和解析>>

科目:初中数学 来源:山东省2018届九年级12月月考数学试卷 题型:单选题

一元二次方程根的情况是 ( )

A. 有不等实根 B. 有相等实根 C. 无实根 D. 无法确定

C 【解析】先计算判别式的值,然后根据判别式的意义判断根的情况. 【解析】 ∵△=52?4×7=?3<0, ∴方程没有实数根. 故选C.

查看答案和解析>>

科目:初中数学 来源:湖北省武汉市汉阳区2018届九年级(上)期中数学试卷(解析版) 题型:填空题

如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15m,一面利用旧墙,其余三面用篱笆围,篱笆长为24m,若围成的花圃面积为40m2时,平行于墙的BC边长为_____m.

4. 【解析】x()=40, 解得x1=20(舍去),x2=4. BC边长为4m. 故答案为4.

查看答案和解析>>

科目:初中数学 来源:2017年海南省海口市中考数学模拟试卷 题型:解答题

如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).

(1)求证:

(2)求△AMN的面积(用a,b,c的代数式表示);

(3)当∠MAN=45°时,求证:c2=2ab.

(1)证明见解析;(2)c(a+b﹣c);(3)证明见解析. 【解析】试题分析:(1)首先过点N作NH⊥AB于点H,过点M作MI⊥AD于点I,可得△NHB和△DIM是等腰直角三角形,四边形AGNH和四边形AEMI是矩形,则可求得BN=b,DM=a,继而求得答案; (2)由S△AMN=S△ABD-S△ABM-S△ADN,可得S△AMN=c2-c(c-a)-c(c-b),继而求得答案; ...

查看答案和解析>>

同步练习册答案