精英家教网 > 初中数学 > 题目详情

如图,AB是⊙O的直径,C、D为圆O上的两点,若∠CDB=35°,则∠ABC的度数为_____度.

55 【解析】由于AB是⊙O的直径,由圆周角定理可知∠ACB=90°,则∠A+∠ABC=90°,欲求∠ABC需先求出∠A的度数,已知了同弧所对的圆周角∠CDB的度数,则∠A=∠CDB=35°,由此得∠ABC=90°-∠A=55°. 故答案为:55.
练习册系列答案
相关习题

科目:初中数学 来源:山东省德州市2017-2018学年九年级上学期期中考试数学试卷 题型:单选题

如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为_____度.

15; 【解析】试题分析:根据旋转的性质得出△BCE≌△DCF,推出CE=CF,∠BEC=∠DFC=60°,根据∠BCD=∠DCF=90°,求出∠EFC=∠CEF=45°,即可求出答案.

查看答案和解析>>

科目:初中数学 来源:江西省2017-2018学年度八年级第三次月考数学试卷 题型:解答题

解下列关于x的不等式(组):

(1) (2)

(3) (4)

(1);(2)<x≤2;(3)-1≤x≤2;(2)x>. 【解析】试题分析:(1)移项合并同类项后,系数化1即可;(2)分别求出三个不等式的解集,这三个不等式解集的公共部分即为不等式组的解集;(3)由不等式|2x-1|≤3可得-3≤2x-1≤3,解这个不等式组即可;(4)根据绝对值大于其本身的数为负数可得-3x+1<0,解不等式即可. 试题解析: (1)2x-3x>9, -...

查看答案和解析>>

科目:初中数学 来源:江西省2017-2018学年度八年级第三次月考数学试卷 题型:单选题

△ABC中,AB=AC,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E且DE=4,则AD+AE的值为(  )

A. 6 B. 10 C. 6或14 D. 6或10

C 【解析】分两种情况: ①如图, ∵D在AB垂直平分线上,E在AC垂直平分线上, ∴BD=AD,CE=AE, ∵BC=10,DE=4, ∴BD+CE=10-4=6, ∴AD+AE=6, ②如图, ∵D在AB垂直平分线上,E在AC垂直平分线上, ∴BD=AD,CE=AE, ∵BC=10,DE=4, ∴BD+CE=BC+DE=1...

查看答案和解析>>

科目:初中数学 来源:2017年广西南宁八中中考数学五模试卷 题型:解答题

计算:()﹣1+(π﹣3.14)0﹣2sin60°﹣+|1﹣3|

【解析】试题分析:根据负整指数幂、零次幂,特殊角的三角函数值、二次根式和绝对值求解即可. 试题解析:【解析】 原式=+1﹣2×﹣2+3﹣1 =﹣﹣2+3﹣1 =.

查看答案和解析>>

科目:初中数学 来源:2017年广西南宁八中中考数学五模试卷 题型:单选题

若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是(  )

A. k>﹣1 B. k<1且k≠0 C. k≥﹣1且k≠0 D. k>﹣1且k≠0

D 【解析】试题分析:根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围k>﹣1且k≠0. 故选D.

查看答案和解析>>

科目:初中数学 来源:2017年广西南宁八中中考数学五模试卷 题型:单选题

某红外线遥控器发出的红外线波长为0.000 00094m,用科学计数法表示这个数是(  )

A. 9.4×10-7m B. 9.4×107m C. 9.4×10-8m D. 9.4×108m

A 【解析】试题分析:科学计数法是指:a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.

查看答案和解析>>

科目:初中数学 来源:山西省2017-2018学年八年级上期末模拟数学试卷 题型:单选题

下列条件中不能使两个直角三角形全等的是(  )

A. 两条直角边对应相等 B. 两个锐角对应相等

C. 一条直角边和斜边对应相等 D. 一个锐角和斜边对应相等

B 【解析】选项A,可以利用边角边判定两三角形全等;选项B,全等三角形的判定必须有边的参与,三个角对应相等不能判定两三角形全等;选项C,根据斜边直角边定理判定两三角形全等;选项D,可以利用角角边判定两三角形全等.故选B.

查看答案和解析>>

科目:初中数学 来源:黑龙江省密山市2017-2018学年八年级上学期期中考试数学试卷 题型:解答题

先化简,再求值: .

原式=,当时,原式. 【解析】试题分析:先根据整式乘法法则进行计算,再合并同类项,最后代入求值即可. 试题解析: 原式=, 当x=-1时,原式=

查看答案和解析>>

同步练习册答案